
Multistring Solutions of the Self-Graviting
Massive W−Boson

Dongho Chae
Department of Mathematics
Sungkyunkwan University

Suwon 440-746, Korea
e-mail: chae@skku.edu

Abstract

We consider a semilinear elliptic system which include the model
system of the W−strings in the cosmology as a special case. We prove
existence of multi-string solutions and obtain precise asymptotic de-
cay estimates near infinity for the solutions. As a special case of this
result we solve an open problem in [4]

1 Introduction

Let λ1, λ2, λ2, λ4 > 0 be given. We consider the following system for (u, η) in
R2.

∆u = −λ1e
η − λ2e

u + 4π
N∑

j=1

δ(z − zj), (1.1)

∆η = −λ3e
η − λ4e

u (1.2)

equipped with the boundary condition

∫

R2

eudx +

∫

R2

eηdx < ∞, (1.3)
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where we denoted z = x1 + ix2 ∈ C = R2. The system (1.1)-(1.2) reduces to
the Bogomol’nyi type of equation modelling the cosmic strings with matter
field given by the massive W−boson of the electroweak theory if we choose
the coefficients as,

λ1 = 2m2
W , λ2 = 4e2, λ3 =

16πGm4
W

e2
, λ4 = 32πGm2

W , (1.4)

where mW is the mass of the W−boson, e is the charge of the electron, and
G is the gravitational constant([1],[4]). The points {z1, · · · , zN} corresponds
to the location on the (x1, x2)−plane of parallel (along the x3−axis) strings.
See [4] for the derivation of this system from the corresponding Einsten-
Weinberg-Salam theory as well as interesting physical backgrounds of the
model. In [4] the construction of radially symmetric solution(in the case
z1 = · · · = zN) is discussed by further reduction the system into a single
equation, and solving the ordinary differential equation. When the locations
of strings are different to each other, however, we cannot assume the radial
symmetry of the solutions, and no existence theory is available. In particular,
the author of [4] left the construction of solution in this case as an open
problem. One of our main purpose in this paper is to solve this problem.
Actually, we solve the existence problem for more general coefficient cases as
in (1.1)-(1.2). The following is our main theorem.

Theorem 1.1 Let N ∈ N ∪ {0}, and Z = {zj}N
j=1 be given in R2 allowing

multiplicities. Then, there exists a constant ε1 > 0 such that for any ε ∈
(0, ε1) and any c0 > there exists a family of solutions to (1.1)-(1.3), (u, η).
Moreover, the solutions we constructed have the following representations:

u(z) = ln ρI
ε,a∗ε(z) + ε2w1(ε|z|) + ε2v∗1,ε(εz), (1.5)

η(z) = ln ρII
ε,a∗ε(z) + ε2w2(ε|z|) + ε2v∗2,ε(εz), (1.6)

where the functions ρI
ε,a(z), ρII

ε,a(z) are defined by

ρI
ε,a(z) =

8ε2N+2|f(z)|2
λ2

(
1 + ε2N+2|F (z) + a

εN+1 |2
)2 , (1.7)

and

ρII
ε,a(z) =

c0ε
4

(
1 + ε2N+2|F (z) + a

εN+1 |2
) 2λ4

λ2

(1.8)

with

f(z) = (N + 1)
N∏

j=1

(z − zj), F (z) =

∫ z

0

f(ξ)dξ (1.9)

for k = 1, 2, ε > 0 and a = a1 + ia2 ∈ C. The smooth radial functions, w1, w2

in (1.5) and (1.6) respectively satisfy the asymptotic formula,

w1(|z|) = −C1 ln |z|+ O(1), w2(|z|) = −C2 ln |z|+ O(1) (1.10)
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as |z| → ∞, where

C1 =
c0λ1λ2λ4

2(N + 1)(λ2 + λ4)(λ2 + 2λ4)
, (1.11)

C2 =





C1λ4

λ2

[
=

c0λ1λ
2
4

2(N + 1)(λ2 + λ4)(λ2 + 2λ4)

]
if λ1λ4 − λ2λ3 = 0,

C1λ4

λ2

− (λ1λ4 − λ2λ3)c0

2(N + 1)λ2

B

(
1

N + 1
,
2λ4

λ2

− 1

N + 1

)
if N + 1 >

λ2

2λ4

(1.12)

with the beta function(Euler’s integral of the first kind) defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt. ∀x, y > 0

(See [3].) The function v∗1,ε, v
∗
2,ε in (1.5) and (1.6) respectively satisfy

sup
z∈R2

|v∗1,ε(εz)|+ |v∗2,ε(εz)|
ln(e + |z|) ≤ o(1) as ε → 0. (1.13)

Remark 1.1. In the physical model of the cosmic strings of W−boson, (1.4),
we note that the first case of (1.12) holds(λ1λ4 − λ2λ3 = 0), and we have
C2 > 0 as well as C1 > 0. Thus, we have extra(additional) contributions from
the second terms of to the decays of u and η in (1.5) and (1.6) respectively.

2 Proof of Theorem 1.1

We note that for any ε > 0 and a ∈ C, ln ρI
ε,a(z), is a solution of the Liouville

equation.

∆ ln ρI
ε,a(z) = −λ2ρ

I
ε,a(z) + 4π

N∑
j=1

δ(z − z1,j). (2.1)

We consider the following equation for ρII
a,ε(z)

∆ ln ρII
a,ε(z) = −λ4ρ

I
a,ε(z). (2.2)

From (2.1) we have

∆

[
ln ρI

a,ε(z)−
N∑

j=1

ln |z − zj|2
]

= −λ2ρ
I
a,ε(z). (2.3)

Combining (2.2) with (2.3), we obtain

∆

{
λ4

[
ln ρI

a,ε(z)−
N∑

j=1

ln |z − zj|2
]
− λ2 ln ρII

a,ε(z)

}
= 0,
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from which we derive

ln ρII
a,ε(z) =

λ4

λ2

[
ln ρI

a,ε(z)−
N∑

j=1

ln |z − zj|2
]

+ h(z),

where h(z) is a harmonic function. Choosing h(z) as the constant,

h(z) ≡ λ4

λ2

ln

(
ε

4λ2
λ4
−2N−2

λ
λ2
λ4
2 [8(N + 1)2]−1c

λ2
λ4
0

)
,

we get the form of ρII
a,ε(z) given in (1.8). We set

gI
ε,a(z) =

1

ε2
ρI

ε,a

(z

ε

)
, gII

ε,a(z) =
1

ε4
ρII

ε,a

(z

ε

)
,

and define ρ1(r) and ρ2(r) by

ρ1(r) =
8(N + 1)2r2N

λ2(1 + r2N+2)2
= lim

ε→0
gI

ε,0(z),

and
ρ2(r) =

c0

(1 + r2N+2)
2λ4
λ2

= lim
ε→0

gII
ε,0(z)

respectively. We transform (u, η) 7→ (v1, v2) by the formula

u(z) = ln ρI
ε,a(z) + ε2w1(ε|z|) + ε2v1(εz), (2.4)

η(z) = ln ρII
ε,b(z) + ε2w2(ε|z|) + ε2v2(εz), (2.5)

where w1 and w2 are the radial functions to be determined below. Then, using
(2.1), the system can be written as the functional equation, P (v1, v2, a, ε) =
(0, 0), where

P1(v1, v2, a, ε) = ∆v1 + λ1g
II
a,ε(z)eε2(w2+v2) + λ2

gI
ε,a(z)

ε2
(eε2(w1+v1) − 1) + ∆w1,

(2.6)
and

P2(v1, v2, a, ε) = ∆v2 + λ3g
II
ε,a(z)eε2(w2+v2) + λ4

gI
ε,a(z)

ε2
(eε2(w1+v1) − 1) + ∆w2.

(2.7)
Now we introduce the functions spaces introduced in [2]. For α > 0 the
Banach spaces Xα and Yα are defined as

Xα = {u ∈ L2
loc(R2) |

∫

R2

(1 + |x|2+α)|u(x)|2dx < ∞}
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equipped with the norm ‖u‖2
Xα

=
∫
R2(1 + |x|2+α)|u(x)|2dx, and

Yα = {u ∈ W 2,2
loc (R2) | ‖∆u‖2

Xα
+

∥∥∥ u(x)

1 + |x|1+α
2

∥∥∥
2

L2(R2)
< ∞}

equipped with the norm ‖u‖2
Yα

= ‖∆u‖2
Xα

+
∥∥ u(x)

1+|x|1+ α
2

∥∥2

L2(R2)
. We recall the

following propositions proved in [2].

Proposition 2.1 Let Yα be the function space introduced above. Then we
have the followings.

(i) If v ∈ Yα is a harmonic function, then v ≡ constant.

(ii) There exists a constant C > 0 such that for all v ∈ Yα

|v(x)| ≤ C‖v‖Yα ln(e + |x|), ∀x ∈ R2.

Proposition 2.2 Let α ∈ (0, 1
2
), and let us set

L = ∆ + ρ : Yα → Xα. (2.8)

where

ρ(z) = ρ(|z|) =
8(N + 1)2|z|2N

(1 + |z|2N+2)2
.

We have
KerL = Span {ϕ+, ϕ−, ϕ0} , (2.9)

where we denoted

ϕ+(r, θ) =
rN+1 cos(N + 1)θ

1 + r2N+2
, ϕ−(r, θ) =

rN+1 sin(N + 1)θ

1 + r2N+2
, (2.10)

and

ϕ0 =
1− r2N+2

1 + r2N+2
. (2.11)

Moreover, we have

ImL = {f ∈ Xα|
∫

R2

fϕ± = 0}. (2.12)

Hereafter, we fix α = 1
4
, and set X 1

4
= X and Y 1

4
= Y .

Using Proposition 2.1 (ii), one can check easily that for ε > 0 P is a well
defined continuous mapping from Bε0 into X2, where we set Bε0 = {‖v1‖2

Y +
‖v2‖2

Y + |a|2 < ε0}, for sufficiently small ε0. In order to extend continuously
P to ε = 0 the radial functions w1(r), w2(r) should satisfy

∆w1 + λ2ρ1w1 + λ1ρ2 = 0 (2.13)

∆w2 + λ4ρ1w1 + λ3ρ2 = 0 (2.14)

For the existence and asymptotic properties of w1 and w2 we have the fol-
lowing lemma, which is a part of Theorem 1.1.

5



Lemma 2.1 There exist radial solutions w1(|z|), w2(|z|) of (2.13)-(2.14) be-
longing to Y , which satisfy the asymptotic formula in (1.10),(1.11),(1.12).

Proof: Let us set f(r) = ρ1(r). Then, it is found in [2] that the ordinary
differential equation(with respect to r), ∆w1 + C1ρ1w1 = f(r) has a solution
w1(r) ∈ Y given by

w1(r) = ϕ0(r)

{∫ r

0

φf (s)− φf (1)

(1− s)2
ds +

φf (1)r

1− r

}
(2.15)

with

φf (r) :=

(
1 + r2N+2

1− r2N+2

)2
(1− r)2

r

∫ r

0

ϕ0(t)tf(t)dt,

where φf (1) and w1(1) are defined as limits of φf (r) and w1(r) as r → 1.
From the formula (2.15) we find that

w1(r) = ϕ0(r)

∫ r

2

(
1 + s2N+2

1− s2N+2

)2
I(s)

s
ds + (bounded function of r)

as r →∞, where

I(s) = λ1

∫ s

0

ϕ0(t)tρ2(t)dt.

Since ϕ0(r) → −1 as r →∞, the first part of (1.10) follows if we show

I = I(∞) = λ1

∫ ∞

0

ϕ0(r)rρ2(r)dr = C1.

Changing variable r2N+2 = t, we evaluate

I = λ1

∫ ∞

0

ϕ0(r)ρ2(r)rdr

= c0λ1

∫ ∞

0

[
r2N

(1 + r2N2+2)
3+

2λ4
λ2

− r4N+2

(1 + r2N2+2)
3+

2λ4
λ2

]
rdr

=
c0λ1

2(N + 1)

[∫ ∞

0

1

(1 + t)
3+

2λ4
λ2

dt−
∫ ∞

0

t

(1 + t)
3+

2λ4
λ2

dt

]

=
c0λ1

2(N + 1)


 1

2 + 2λ4

λ2

− 1(
2 + 2λ4

λ2

)(
1 + 2λ4

λ2

)



=
c0λ1λ2λ4

2(N + 1)(λ2 + λ4)(λ2 + 2λ4)
= C1. (2.16)

In order to obtain C2 we find from (2.13) and (2.14) that

∆(λ4w1 − λ2w2) = (−λ1λ4 + λ2λ3)ρ2,
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from which we have

w2(z) =
λ4

λ2

w1(z) +
λ1λ4 − λ2λ3

2πλ2

∫

R2

ln(|z − y|)ρ2(|y|)dy

= −λ4C1

λ2

ln |z|+ λ1λ4 − λ2λ3

2πλ2

[∫

R2

ρ2(|y|)dy

]
ln |z|+ O(1)

(2.17)

as |z| → ∞. In the case λ1λ4 − λ2λ3 = 0, we have C2 = λ4C1

λ2
. In the case

2λ4

λ2
> 1

N+1
, we compute the integral as follows.

∫

R2

ρ2(|y|)dy = 2πc0

∫ ∞

0

r

(1 + r2N+2)
2λ4
λ2

dr

=
πc0

N + 1

∫ ∞

0

t−
N

N+1

(1 + t)
2λ4
λ2

dt (r2N+2 = t)

=
πc0

N + 1
B

(
1

N + 1
,
2λ4

λ2

− 1

N + 1

)
, (2.18)

where we used the formula(See pp. 322[3]) for the beta function
∫ ∞

0

xµ−1

(1 + x)ν
dx = B(µ, ν − µ), where ν > µ.

Substituting (2.18) into (2.17), we have w2(z) = −C2 ln |z|+O(1) as |z| → ∞,
where C2 is given by (1.12). This completes the proof of Lemma 2.1 ¤

Now we compute the linearized operator of P .
By direct computation we have

lim
ε→0

∂gI
a,ε(z)

∂a1

∣∣∣∣∣
a=0

= −4ρ1ϕ+, lim
ε→0

∂gI
a,ε(z)

∂a2

∣∣∣∣∣
a=0

= −4ρ1ϕ−,

lim
ε→0

∂gII
a,ε(z)

∂a1

∣∣∣∣∣
a=0

= −4ρ2ϕ+, lim
ε→0

∂gII
a,ε(z)

∂a2

∣∣∣∣∣
a=0

= −4ρ2ϕ−.

Let us set P ′
u,η,a(0, 0, 0, 0) = A. Then, using the above preliminary computa-

tions, we obtain

A1[ν1, ν2, α] = ∆ν1 + λ2ρ1ν1 − 4(λ2w1ρ1 + λ1ρ2)(ϕ+α1 + ϕ−α2),

and

A2[ν1, ν2, α] = ∆ν2 + λ4ρ1ν1 − 4(λ4w1ρ1 + λ3ρ2)(ϕ+α1 + ϕ−α2).

We establish the following lemma for the operator A.
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Lemma 2.2 The operator A : Y 2×C×R+ defined above is onto. Moreover,
kernel of A is given by

KerA = Span{(0, 1); (ϕ±,
λ4

λ2

ϕ±), (ϕ0,
λ4

λ2

ϕ0)} × {(0, 0)}.

Thus, if we decompose Y 2 × C = U ⊕ KerA, where we set U = (KerA)⊥,
then A is an isomorphism from U onto X2.

In order to prove the above lemma we need to establish the following.

Proposition 2.3

I± :=

∫

R2

(λ2w1ρ1 + λ1ρ2)ϕ±dx 6= 0. (2.19)

Proof: In order to transform the integrals we use the formula

L

[
1

16(1 + r2N+2)2

]
=

(N + 1)2r4N+2

(1 + r2N+2)4
, ∀N ∈ Z+

which can be verified by an elementary computation. Using this, we have
the following
∫

R2

(λ2w1ρ1 + λ1ρ2)ϕ
2
±dx =

∫ 2π

0

∫ ∞

0

(λ2w1ρ1 + λ1ρ2)
r2N+2

(1 + r2N+2)2

{
cos2(N + 1)θ
sin2(N + 1)θ

}
rdrdθ

= π

∫ ∞

0

[
8(N + 1)2r2N

(1 + r2N+2)2
w1 + λ1ρ2

]
r2N+2

(1 + r2N+2)2
rdr

= π

∫ ∞

0

[
1

2
L

{
1

(1 + r2N+2)2

}
w1 +

λ1ρ2r
2N+2

(1 + r2N+2)2

]
rdr

= π

∫ ∞

0

[
1

2
Lw1 · 1

(1 + r2N+2)2
+

λ1ρ2r
2N+2

(1 + r2N+2)2

]
rdr

= πλ1c0

∫ ∞

0

[
− ρ2

2(1 + r2N+2)2
+

ρ2r
2N+2

(1 + r2N+2)2

]
rdr

=
πλ1c0

2

∫ ∞

0

r2N+2 − 1

(1 + r2N+2)
2+

2λ4
λ2

rdr =
πλ1c0

4

∫ ∞

0

tN+1 − 1

(1 + tN+1)
2+

2λ4
λ2

dt (r2 = t)

=
πλ1c0

4

[∫ 1

0

tN+1 − 1

(1 + tN+1)
2+

2λ4
λ2

dt +

∫ ∞

1

tN+1 − 1

(1 + tN+1)
2+

2λ4
λ2

dt

]

(Changing variable t → 1/t in the second integral,)

=
πλ1c0

4

[∫ 1

0

tN+1 − 1

(1 + tN+1)
2+

2λ4
λ2

dt +

∫ 1

0

(1− tN+1)t
2λ4
λ2

(1 + tN+1)
2+

2λ4
λ2

dt

]

=
πλ1c0

4

∫ ∞

0

(tN+1 − 1)(1− t
2λ4
λ2 )

(1 + tN+1)
2+

2λ4
λ2

dt < 0.
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This completes the proof of the proposition.¤

We are now ready to prove Lemma 2.2.

Proof of Lemma 2.2: Given (f1, f2) ∈ X2, we want first to show that there
exists (ν1, ν2) ∈ Y 2, α1, α2 ∈ R such that

A(ν1, ν2, α1, α2) = (f1, f2),

which can be rewritten as

∆ν1 + λ2ρ1ν1 − 4(λ2w1ρ1 + λ1ρ2)(ϕ+α1 + ϕ−α2) = f1, (2.20)

and

∆ν2 + λ4ρ1ν1 − 4(λ4w1ρ1 + λ3ρ2)(ϕ+α1 + ϕ−α2) = f2. (2.21)

Let us set

α1 =
1

4I+

∫

R2

f1ϕ+dx, α2 =
1

4I−

∫

R2

f2ϕ−dx, (2.22)

where I± 6= 0 is defined in (2.19). We introduce f̃ by

f̃1 = f1 − α1ϕ+ − α2ϕ−. (2.23)

Using the fact

∫ 2π

0

ϕ+ϕ−dθ = 0, (2.24)

we find easily ∫

R2

f̃1ϕ±dx = 0. (2.25)

Hence, by (2.12) there exists ν1 ∈ Y such that ∆ν1 + λ2ρ1ν1 = f̃1. Thus we
have found (ν1, α1, α2) ∈ Y × R2 satisfying (2.20). Given such (ν1, α1, α2),
the function

ν2(z) =
1

2π

∫

R2

ln(|z − y|)g(y)dy + c1, (2.26)

where
g = f2 − λ4ρ1ν1 + 4(λ4w1ρ1 + λ3ρ2)(ϕ+α1 + ϕ−α2),

and c1 is any constant, satisfies (2.21), and belongs to Y . We have just
finished the proof that A : Y 2 × R2 → X2 is onto.
We now show that the restricted operator(denoted by the same symbol),
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A : (KerL ⊕ Span{1})⊥ × R2 → X2 is one to one. Given (ν1, ν2, α1, α2) ∈
(KerL ⊕ Span{1})⊥ × R2, let us consider the equation, A(ν1, ν2, α1, α2) =
(0, 0), which corresponds to

∆ν1 + λ2ρ1ν1 − 4(λ2w1ρ1 + λ1ρ2)(ϕ+α1 + ϕ−α2) = 0, (2.27)

and
∆ν2 + λ4ρ1ν1 − 4(λ4w1ρ1 + λ3ρ2)(ϕ+α1 + ϕ−α2) = 0. (2.28)

Taking L2(R2) inner product of (2.27) with ϕ±, and using (2.19), we find
α1 = α2 = 0. Thus, (2.27) implies ν1 ∈ KerL. This, combined with the hy-
pothesis ν1 ∈ (KerL)⊥ leads to ν1 = 0. Now, (2.28) is reduced to ∆ν2 = 0.
Since ν2 ∈ Y , Proposition 2.1 implies ν2 = constant. Since ν2 ∈ (Span{1})⊥
by hypothesis, we have ν2 = 0. This completes the proof of the lemma. ¤

We are now ready to prove our main theorem.
Proof of Theorem 1.1: Let us set

U = (KerL⊕ Span{1})⊥ ×R2.

Then, Lemma 2.2 shows that P ′
(v1,v2,α)(0, 0, 0, 0) : U → X2 is an isomorphism.

Then, the standard implicit function theorem(See e.g. [5]), applied to the
functional P : U × (−ε0, ε0) → X2, implies that there exists a constant
ε1 ∈ (0, ε0) and a continuous function ε 7→ ψ∗ε := (v∗1,ε, v

∗
2,ε, a

∗
ε) from (0, ε1)

into a neighborhood of 0 in U such that

P (v∗1,ε, v
∗
2,ε, a

∗
ε) = (0, 0), for all ε ∈ (0, ε1).

This completes the proof of Theorem 1.1. The representation of solutions
u1, u2, and the explicit form of ρI

ε,a∗ε(z), ρII
ε,a∗ε(z), , together with the asymp-

totic behaviors of w1, w2 described in Lemma 2.1, and the fact that v∗1,ε, v
∗
2,ε ∈

Y , combined with Proposition 2.1, implies that the solutions satisfy the
boundary condition in (1.3). Now, from Proposition 2.1 we obtain that for
each j = 1, 2,

|v∗j,ε(x)| ≤ C‖v∗j,ε‖Y (ln+ |x|+ 1) ≤ C‖ψε‖U(ln+ |x|+ 1). (2.29)

This implies then

|v∗j,ε(εx)| ≤ C‖ψε‖U(ln+ |εx|+ 1) ≤ C‖ψε‖U(ln+ |x|+ 1).cxxc

From the continuity of the function ε 7→ ψε from (0, ε0) into U and the fact
ψ∗0 = 0 we have

‖ψε‖U → 0 as ε → 0. (2.30)

The proof of (1.13) follows from (2.29) combined with (2.30). This completes
the proof of Theorem 1.1¤
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