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Abstract

In this paper we prove the global in time regularity for the 2D
Boussinesq system with either the zero diffusivity or the zero viscosity.
We also prove that as diffusivity(viscosity) goes to zero the solutions
of the fully viscous equations converges stongly to those of zero diffu-
sion(viscosity) equations. Our result for the zero diffusion system, in
particular, solves the Problem no. 3 posed by M. K. Moffatt in [8].

1 Introduction

The Boussineq system for the homogeneous incompressible fluid flows in R2

is

(B)





∂v

∂t
+ (v · ∇)v = −∇p + ν∆v + θe2,

∂θ

∂t
+ (v · ∇)θ = κ∆θ

div v = 0,

v(x, 0) = v0(x), θ(x, 0) = θ0(x),

∗This research is supported partially by KOSEF no. 301-20000001-2 and by an Inter-
disciplinary Research Grant of the Seoul National University in 2003.

1



where v = (v1, v2), vj = vj(x, t), j = 1, 2, (x, t) ∈ R2 × (0,∞), is the velocity
vector field, p = p(x, t) is the scalar pressure, θ(x, t) is the scalar temperature,
ν ≥ 0 is the viscosity, and κ ≥ 0 is the molecular diffusivity, and e2 = (0, 1).
The Boussinesq system has important roles in the atmospheric sciences(See
e.g. [7]).

The global in time regularity of (B) with ν > 0 and κ > 0 is well-
known(See e.g. [2]). On the other hand, the regularity/singularity questions
of the case of (B) with κ = ν = 0 is an outstanding open problem in the
mathematical fluid mechanics(See e.g. [3, 5, 9] for studies in this direction.).
Even the regularity problem for ‘partial viscosity cases’(i.e. either the zero
diffusivity case, κ = 0 and ν > 0, or the zero viscosity case, κ > 0 and ν = 0),
has been open to author’s knowledge. Actually, the author has been recently
informed of the article by M. K. Moffatt, where the question of singularity
in the case κ = 0, ν > 0 and its possible development in the limit κ → 0 is
listed as one of the 21th century problems(See the Problem no. 3 in [8]). For
this problem very recent progress is obtained by Cordoba, Fefferman and De
La LLave([4]), where the authors proved that special type of singularities,
called ‘squirt singularities’, is absent. In this paper we consider the both
of two partial viscosity cases, and prove the global in time regularity for
both of the cases. We also prove that as diffusivity(viscosity) goes to zero
the solutions of (B) converge strongly to those of zero diffusivity(viscosity)
equations. In particular the Problem no. 3 in [8] is solved. More precise
statements of our results are stated in Theorem 1.1 and Theorem 1.2 below.
For later references we write down the zero diffusivity Boussinesq equations:

(B1)





∂v

∂t
+ (v · ∇)v = −∇p + ν∆v + θe2,

∂θ

∂t
+ (v · ∇)θ = 0

div v = 0,

v(x, 0) = v0(x), θ(x, 0) = θ0(x),

where ν > 0 is fixed. For this system the following is our main result.

Theorem 1.1 Let ν > 0 be fixed, and div v0 = 0. Let m > 2 be an integer,
and (v0, θ0) ∈ Hm(R2). Then, there exists unique solution (v, θ) with θ ∈
C([0,∞); Hm(R2)) and v ∈ C([0,∞); Hm(R2)) ∩ L2(0, T ; Hm+1(R2)) of the
system (B1). Moreover, for each s < m, solutions (v, θ) of (B) converges to
the corresponding solutions of (B1) in C([0, T ]; Hs(R2)) as κ → 0.
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We also write down the zero viscosity Boussinesq equations.

(B2)





∂v

∂t
+ (v · ∇)v = −∇p + θe2,

∂θ

∂t
+ (v · ∇)θ = κ∆θ

div v = 0,

v(x, 0) = v0(x), θ(x, 0) = θ0(x),

where κ > 0 is given. The following is our result on (B2).

Theorem 1.2 Let κ > 0 be fixed, and div v0 = 0. Let m > 2 be an integer.
Let m > 2 be an integer, and (v0, θ0) ∈ Hm(R2). Then, there exists unique
solutions (v, θ) with v ∈ C([0,∞); Hm(R2)) and θ ∈ C([0,∞); Hm(R2)) ∩
L2(0, T ; Hm+1(R2)) of the system (B2). Moreover, for each s < m, so-
lutions (v, θ) of (B) converges to the corresponding solutions of (B2) in
C([0, T ]; Hs(R2)) as ν → 0.

The author would like to thank deeply to Professor Diego Cordoba for intro-
ducing his preprint([4]) to him, which motivated this research.

2 The Proof of Theorem 1.1

We first recall the following result on the system (B) with κ = ν = 0, proved
in [3],[5]:

Theorem 2.1 Suppose (v0, θ0) ∈ Hm(R2) with m > 2 is an integer. Then,
there exists a unique local classical solution (v, θ) ∈ C([0, T1); H

m(R2)) for
some T1 = T1(‖v0‖Hm , ‖θ0‖Hm). Moreover, the solution remains in Hm(R2)
up to time T > T1, namely (v, θ) ∈ C([0, T ]; Hm(R2)) if and only if

∫ T

0

‖∇θ(t)‖L∞dt < ∞. (2.1)

By obvious changes of the proof in [3] we can easily infer that the similar
conclusion holds for the system (B1) and (B2) respectively. Hence, for the
proof of the global regularity part of Theorem 1.1 and Theorem 1.2 it suffices
to prove the estimate (2.1) for all T ∈ (0,∞) for the classical solutions (v, θ)
of (B1) and (B2).

(i) Preliminary estimates:

Let T > 0 be a given fixed time. From the second equation of (B1) we
immediately have

‖θ(t)‖Lp ≤ ‖θ0‖Lp ∀t ∈ [0, T ], p ∈ [1,∞]. (2.2)
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Taking L2 inner product the first equation of (B1) with v, we have, after
integration by part,

1

2

d

dt
‖v‖2

L2 + ν‖∇v‖2
L2 ≤ ‖θ‖L2‖v‖L2 .

We have
1

2

d

dt
‖v‖2

L2 ≤ ‖θ‖L2‖v‖L2 ≤ ‖θ0‖L2‖v‖L2 ,

where we used (2.2) for p = 2. Hence, d
dt
‖v‖L2 ≤ ‖θ0‖, and we obtain

‖v(t)‖L2 ≤ ‖v0‖L2 + ‖θ0‖L2T ∀t ∈ [0, T ]. (2.3)

Taking the operation curl on the both sides of the first equation of (B), we
obtain

ωt + (v · ∇)ω = −θx1 + ν∆ω, (2.4)

where ω = ∂x1v2 − ∂x2v1. Let p ≥ 2. Multiplying (2.4) by ω|ω|p−2 and
integrating it over R2, we find, after integration by part,

1

p

d

dt

∫

R2

|ω|pdx + (p− 1)ν

∫

R2

|∇ω|2|ω|p−2dx

=
1

p

∫

R2

(v · ∇)|ω|pdx−
∫

R2

θx1ω|ω|p−2dx

= −1

p

∫

R2

div v |ω|pdx + (p− 1)

∫

R2

θωx1|ω|p−2dx

≤ (p− 1)ν

2

∫

R2

|∇ω|2|ω|p−2dx +
(p− 1)

2ν

∫

R2

θ2|ω|p−2dx

≤ (p− 1)ν

2

∫

R2

|∇ω|2|ω|p−2dx +
(p− 1)

2ν
‖θ‖2

Lp‖ω‖p−2
Lp ,

Absorbing the term, (p−1)ν
2

∫
R2 |∇ω|2|ω|p−2dx to the left hand, we find

1

p

d

dt
‖ω‖p

Lp +
(p− 1)ν

2

∫

R2

|∇ω|2|ω|p−2dx ≤ (p− 1)

2ν
‖θ‖2

Lp‖ω‖p−2
Lp . (2.5)

For p = 2 in particular, we obtain after integration over [0, T ],

‖ω(t)‖2
L2 + ν

∫ T

0

‖∇ω(s)‖2
L2ds ≤ 2‖ω0‖2

L2 +
2

ν
‖θ0‖2

L2T ∀t ∈ [0, T ]. (2.6)

Hence, we find that, by Hölder’s inequality,

∫ T

0

‖∇ω(s)‖L2ds ≤ C
√

T

(∫ T

0

‖∇ω(s)‖2
L2ds

) 1
2

≤ C‖ω0‖L2

√
T + C‖θ0‖L2T ∀t ∈ [0, T ]. (2.7)
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On the other hand, from (2.5), we have for p ∈ [2,∞)

‖ω(t)‖2
Lp ≤ ‖ω0‖2

Lp +
(p− 1)

ν
‖θ0‖2

LpT ≤
(
‖ω0‖Lp +

√
p− 1√

ν
‖θ0‖Lp

√
T

)2

,

and

‖ω(t)‖Lp ≤ ‖ω0‖Lp +

√
p− 1√

ν
‖θ0‖Lp

√
T ∀t ∈ [0, T ], p ∈ [2,∞). (2.8)

We now recall the Gagliardo-Nirenberg interpolation inequality in R2.

‖f‖L∞ ≤ C‖f‖
p−2
2p−2

Lp ‖Df‖
p

2p−2

Lp , f ∈ W 1,p(R2), p > 2, (2.9)

By this and the Calderon-Zygmund inequality combined with the estimates
(2.3) and (2.8) we find for p ∈ (2,∞)

‖v(t)‖L∞ ≤ C‖v(t)‖
p−2
2p−2

L2 ‖∇v(t)‖
p

2p−2

Lp ≤ C‖v(t)‖
p−2
2p−2

L2 ‖ω(t)‖
p

2p−2

Lp

≤ C(v0, θ0, T, ν, p) ∀t ∈ [0, T ]. (2.10)

(ii) W 2,p estimate for v:

We take derivative operation D = (∂x1 , ∂x2) on (2.4), and then take L2

inner product it with Dω|Dω|p−2, p > 2. After integration by part we obtain

1

p

d

dt
‖Dω‖p

Lp + (p− 1)ν

∫

R2

|D2ω|2|Dω|p−2dx

= −
∫

R2

[D(v · ∇)ω] Dω|Dω|p−2dx−
∫

R2

Dθx1 Dω|Dω|p−2dx

= (p− 1)

∫

R2

[(v · ∇)ω] D2ω|Dω|p−2dx + (p− 1)

∫

R2

θx1D
2ω|Dω|p−2dx

≤ (p− 1)ν

4

∫

R2

|D2ω|2|Dω|p−2dx +
(p− 1)

ν

∫

R2

|v(x)|2|Dω|pdx

+
(p− 1)ν

4

∫

R2

|D2ω|2|Dω|p−2dx +
(p− 1)

ν

∫

R2

|∇θ|2|Dω|p−2dx,

where we used the inequality, ab ≤ ν
4
a2 + b2

ν
. Absorbing the first and the

third terms to the left hand side, we have

1

p

d

dt
‖Dω‖p

Lp +
(p− 1)ν

2

∫

R2

|D2ω|2|Dω|p−2dx

≤ (p− 1)

ν

∫

R2

|v(x)|2|Dω|pdx +
(p− 1)

ν

∫

R2

|∇θ|2|Dω|p−2dx

≤ (p− 1)

ν
‖v‖2

L∞‖Dω‖p
Lp +

2(p− 1)

p ν
‖∇θ‖p

Lp +
(p− 1)(p− 2)

p ν
‖Dω‖p

Lp ,
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where we used Young’s inequality, a2bp−2 ≤ 2
p
ap + p−2

p
bp for p ≥ 2. Recalling

the estimate of ‖v(t)‖L∞ in (2.10), we find that

d

dt
‖Dω‖p

Lp ≤ C‖Dω‖p
Lp + C‖∇θ‖p

Lp , ∀t ∈ [0, T ], (2.11)

where C = C(v0, θ0, T, ν, p).
Now taking ∇⊥ = (−∂x2 , ∂x1) to the second equation of (B1), we obtain

∇⊥θt + (v · ∇)∇⊥θ = ∇⊥θ · ∇v. (2.12)

Taking L2 inner product (2.12) with ∇⊥θ|∇⊥θ|p−2, we deduce, after integra-
tion by part, that

1

p

d

dt

∫

R2

|∇θ|pdx =
1

p

∫

R2

(v · ∇)|∇θ|pdx +

∫

R2

(∇⊥θ · ∇)v · ∇⊥θ|∇θ|p−2dx

≤
∫

R2

|∇v||∇θ|pdx.

Hence, for p > 2 we have

d

dt
‖∇θ‖p

Lp ≤ p‖∇v‖L∞‖∇θ‖p
Lp

≤ C(1 + ‖∇v‖L2 + ‖D2v‖L2)[1 + log+(‖D2v‖Lp)]‖∇θ‖p
Lp

≤ C(1 + ‖ω‖L2 + ‖Dω‖L2)[1 + log+(‖Dω‖p
Lp + ‖∇θ‖p

Lp)]‖∇θ‖p
Lp ,

≤ C(1 + ‖Dω‖L2)[1 + log+(‖Dω‖p
Lp + ‖∇θ‖p

Lp)]‖∇θ‖p
Lp , (2.13)

where C = (v0, θ0, T, ν, , p), and we used the following form of the Brezis-
Wainger inequality[1](See also [6]),

‖f‖L∞ ≤ C(1 + ‖∇f‖L2)
[
1 + log+(‖∇f‖Lp)

] 1
2 + C‖f‖L2 (2.14)

for f ∈ L2(R2)∩W 1,p(R2), which holds for p > 2, and the Calderon-Zygmund
inequality as well as the estimate (2.6). Adding (2.11) and (2.13) together,
and setting X(t) = ‖∇θ‖p

Lp + ‖Dω‖p
Lp , we find that

dX

dt
≤ C(1 + ‖Dω(t)‖L2)(1 + log+ X)X ≤ C(1 + ‖Dω(t)‖L2)(1 + log+ X)X

for all t ∈ [0, T ], where C = C(v0, θ0, T, ν, p). By Gronwall’s lemma we have

X(t) ≤ X(0) exp

[
exp

{
CT + C

∫ T

0

‖Dω(s)‖L2ds

}]
∀t ∈ [0, T ],

which, combined with the estimate (2.7), implies that for p > 2

‖Dω(t)‖Lp ≤ C(v0, θ0, T, ν, p) ∀t ∈ [0, T ]. (2.15)
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By the Gagliardo-Nirenberg (2.9) and the Calderon-Zygmund inequalities we
have

‖∇v(t)‖L∞ ≤ C‖∇v(t)‖
p−2
2p−2

L2 ‖D2v(t)‖
p

2p−2

Lp ≤ C‖ω(t)‖
p−2
2p−2

L2 ‖Dω(t)‖
p

2p−2

Lp

≤ C(v0, θ0, T, ν, p) ∀t ∈ [0, T ], p ∈ (2,∞], (2.16)

where we used the Gagliardo-Nirenberg inequality(2.9), estimates (2.8), and
(2.15). From the first part of the inequalities of (2.13), we find that

d

dt
‖∇θ‖Lp ≤ ‖∇v‖L∞‖∇θ‖Lp ,

and by Gronwall’s lemma

‖∇θ(t)‖Lp ≤ ‖∇θ0‖Lp exp

(∫ t

0

‖∇v(s)‖L∞ds

)
,

where taking p →∞, we obtain finally

‖∇θ(t)‖L∞ ≤ ‖∇θ0‖L∞ exp

(∫ T

0

‖∇v(s)‖L∞ds

)

≤ C ∀t ∈ [0, T ], (2.17)

where C = C(‖v0‖W 2,p , ‖θ0‖W 2,p , T, p, ν), and we used the estimate (2.16).
Since we have the embedding, Hm(R2) ↪→ W 2,p(R2), for all m > 2 and p > 2
we have just reached to the estimate (2.1). for any given T ∈ (0,∞) and for
all v0, θ0 ∈ Hm(R2) with m > 2.

(iii) Vanishing diffusivity limit:

Let (v, p, θ) and (ṽ, p̃, θ̃) be solutions of (B1) and (B) respectively with
the same initial conditions (v0, θ0). We first observe that all the estimates
derived in (i) and (ii) above are also valid for solutions of (B). Moreover
these estimates are independent of κ. Summarizing these estimates, we have
the key κ-independent estimates for the solutions (ṽ, θ̃).

‖∇ṽ‖L∞ + ‖∇θ̃‖L∞ + ‖ṽ‖W 2,p + ‖θ̃‖W 2,p ≤ C(‖v0‖W 2,p , ‖θ0‖W 2,p , ν, T, p).
(2.18)

From (B)− (B)1 we obtain for Θ = θ − θ̃, P = p− p̃, V = v − ṽ

Θt + (v · ∇)Θ + (V · ∇)θ̃ = κ∆Θ + κ∆θ̃, (2.19)

and
Vt + (v · ∇)V + (V · ∇)ṽ = −∇P + Θe2 + ν∆V (2.20)
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together with div V = 0. Taking L2 inner product (2.19) with Θ, we have
after integration by part

1

2

d

dt
‖Θ‖2

L2 + κ‖∇Θ‖2
L2 = −

∫

R2

(V · ∇)θ̃ Θdx− κ

∫

R2

∇θ̃ · ∇Θdx

≤ ‖∇θ̃‖L∞‖V ‖L2‖Θ‖L2 + κ‖∇θ̃‖L2‖∇Θ‖L2

≤ C‖V ‖2
L2 + C‖Θ‖2

L2 +
κ

2
‖∇θ̃‖2

L2 +
κ

2
‖∇Θ‖2

L2 ,

where C = C(v0, θ0, T, ν), and we have used the estimate (2.18). Absorbing
the term, κ

2
‖∇Θ‖2

L2 to the left hand side, and using the estimate (2.18), we
obtain that

d

dt
‖Θ‖2

L2 + κ‖∇Θ‖2
L2 ≤ C‖Θ‖2

L2 + C‖V ‖2
L2 + Cκ‖∇θ̃‖2

L2 . (2.21)

On the other hand, we take L2 inner product (2.20) with V , and integrate
by part to obtain:

1

2

d

dt
‖V ‖2

L2 + ν‖∇V ‖2
L2 = −

∫

R2

(V · ∇)ṽ · V dx +

∫

R2

Θe2 · V dx

≤ ‖∇ṽ‖L∞‖V ‖2
L2 + ‖Θ‖L2‖V ‖L2

≤ C(‖V ‖2
L2 + ‖Θ‖2

L2), (2.22)

where C = C(v0, θ0, T, ν), where we used (2.18) again. Adding (2.22) to
(2.21), and setting X(t) = ‖Θ(t)‖2

L2 + ‖V (t)‖2
L2 , we obtain that

d

dt
X(t) ≤ CX(t) + Cκ‖∇θ̃‖2

L2 .

By Gronwall’s lemma we find that

X(t) ≤ X(0)eCt + Cκ

∫ t

0

‖∇θ̃(s)‖2
L2eC(t−s)ds

≤ CeCT κ

∫ T

0

‖∇θ̃(t)‖2
L2dt ≤ Cκ,

where we used the fact X(0) = 0 and the estimate (2.18). Hence, we obtain

sup
0≤t≤T

(‖v(t)− ṽ(t)‖L2 + ‖θ(t)− θ̃(t)‖L2) ≤ C
√

κ, (2.23)

where C = C(v0, θ0, T, ν). From the Gagliardo-Nirenberg interpolation in-
equality, and the estimate (2.18) together with the embedding, Hm(R2) ↪→
W 2,p(R2) for m > 2, we deduce that for 0 ≤ s < m,

sup
0≤t≤T

‖v(t)− ṽ(t)‖Hs ≤ C sup
0≤t≤T

‖v(t)− ṽ(t)‖σ
L2‖v(t)− ṽ(t)‖1−σ

Hm , ,

≤ C(‖v0‖Hm + ‖ṽ0‖Hm)1−σ sup
0≤t≤T

‖v(t)− ṽ(t)‖σ
L2

≤ Cκ
m−s
2m , where σ = 1− s

m
and C = C(v0, θ0, T, ν, s, m),
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and similarly for ‖θ − θ̃‖Hs , and we obtain the desired convergence (ṽ, θ̃) →
(v, θ) in C([0, T ]; Hs((R2)) as κ → 0. ¤

Remark after the proof: The local existence and finite time blow-up crite-
rion for solutions in the functional setting, Hm(R2), m > 2, which is proved
in ([3],[5]) can be easily modified using function spaces W 2,p(R2), p > 2.
Combining this with the above proof, we can actually prove the following:

Corollary 2.1 Let 2 < p < ∞, and (v0, θ0) ∈ W 2,p(R2). Then, there exists
unique solution (v, θ) ∈ C([0,∞); W 2,p(R2)) of the system (B1). Moreover,
for each q ∈ [1, p) and T ∈ (0,∞) , solutions (v, θ) of (B) converges to the
corresponding solutions of (B1) in C([0, T ]; W 1,q(R2)) as κ → 0.

3 The Proof of Theorem 1.2

Similarly to the preliminary remark in beginning of the previous section, in
order to prove the global regularity part of Theorem 1.2 we have only to
prove the estimate (2.1) for the classical solution of (B2) for all T ∈ (0,∞).

(i) Preliminary estimates:

Taking L2 inner product the second equation of (B2) with θ, we have
immediately,

1

2

d

dt
‖θ‖2

L2 + κ‖∇θ‖2
L2 = 0.

Integrating this over [0, T ] we have

1

2
‖θ(t)‖2

L2 +

∫ T

0

‖∇θ‖2
L2dt ≤ 1

2
‖θ0‖2

L2 ∀t ∈ [0, T ]. (3.1)

Next, taking L2 inner product the first equation of (B2) with v, we have after
integration by part

1

2

d

dt
‖v‖2

L2 =

∫

R2

θe2 · vdx ≤ ‖θ‖L2‖v‖L2 .

Combining this with (3.1), we easily obtain

‖v(t)‖L2 ≤ ‖v0‖L2 +

∫ T

0

‖θ(s)‖L2ds = ‖v0‖L2 + T‖θ0‖L2 (3.2)

for all t ∈ [0, T ]. Taking curl of the first equation of (B2), we have

ωt + (v · ∇)ω = −θx1 . (3.3)
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Taking L2 inner product (3.3) with ω, and integrating by part, we deduce

1

2

d

dt
‖ω‖2

L2 ≤
∫

R2

|∇θ||ω|dx ≤ ‖∇θ‖L2‖ω‖L2 ,

and
d

dt
‖ω‖L2 ≤ ‖∇θ‖L2 .

Hence, using the estimate (3.1), we derive

‖ω(t)‖L2 ≤
∫ T

0

‖∇θ‖L2dt + ‖ω0‖L2

≤ T
1
2

(∫ T

0

‖∇θ‖2
L2dt

) 1
2

+ ‖ω0‖L2

≤ T
1
2√
2
‖θ0‖L2 + ‖ω0‖L2 ∀t ∈ [0, T ]. (3.4)

(ii) W 1,p estimate for (θ, v):

Taking operation ∇⊥ on the second equation of (B2), we have

∇⊥θ + (v · ∇)∇⊥θ = (∇⊥θ · ∇)v + κ∆∇⊥θ. (3.5)

We now take scalar product (3.5) in L2 by ∇⊥θ|∇⊥θ|p−2, p > 2, we obtain
after integration by part

1

p

d

dt
‖∇⊥θ‖p

Lp + (p− 1)κ

∫

R2

|D2θ|2|∇⊥θ|p−2dx =

∫

R2

(∇⊥θ · ∇)v · ∇⊥θ|∇⊥θ|p−2dx

= −(p− 1)

∫

R2

v · (∇⊥θ · ∇)∇⊥θ|∇⊥θ|p−2dx

≤ (p− 1)

∫

R2

|v||∇⊥θ||D2θ||∇⊥θ|p−2dx

≤ (p− 1)

2κ

∫

R2

|v|2|∇⊥θ|pdx +
(p− 1)κ

2

∫

R2

|D2θ|2|∇⊥θ|p−2dx,

where we used the inequality, ab ≤ a2

2κ
+ κb2

2
. We absorb the second term to

the left hand side to have

d

dt
‖∇θ‖p

Lp +
p(p− 1)κ

2

∫

R2

|D2θ|2|∇θ|p−2dx ≤ (p− 1)p

2κ
‖v‖2

L∞‖∇θ‖p
Lp

≤ C(1 + ‖v‖L2 + ‖∇v‖L2)2
(
1 + log+(‖∇v‖p

Lp)
) ‖∇θ‖p

Lp

≤ C(1 + ‖v‖L2 + ‖ω‖2
L2)

[
1 + log+(‖ω‖p

Lp + ‖∇θ‖p
Lp)

] ‖∇θ‖p
Lp

≤ C
[
1 + log+(‖ω‖p

Lp + ‖∇θ‖p
Lp)

] ‖∇θ‖p
Lp , (3.6)
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where we applied the Brezis-Wainger inequality (2.14) keeping the power,
1
2
, of the log−term preserved, the Calderon-Zygmund inequality, and the

estimates (3.2), (3.4). On the other hand, taking L2 inner product (3.3) with
ω|ω|p−2, we obtain

1

p

d

dt
‖ω‖p

Lp +
1

p

∫

R2

(v · ∇)|ω|pdx = −
∫

R2

θx2ω|ω|p−2dx

≤
∫

R2

|∇θ||ω|p−1dx

≤ 1

p
‖∇θ‖p

Lp +
(p− 1)

p
‖ω‖p

Lp , (3.7)

where we used Young’s inequality, abp−1 ≤ 1
p
ap + p−1

p
bp, 1 < p < ∞. Adding

(3.7) to (3.6), and setting X(t) = ‖∇θ(t)‖p
Lp + ‖ω‖p

Lp , we have

d

dt
X(t) ≤ C(1 + log X(t))X(t) ∀t ∈ [0, T ].

The Gronwall lemma provides us with

X(t) ≤ X(0)eeCT ∀t ∈ [0, T ].

Hence,
‖∇θ(t)‖p

Lp + ‖ω‖p
Lp ≤ C(v0, θ0, T, p, κ). (3.8)

We also note that similarly to (2.10), the estimate (3.8), combined with (3.2)
and (2.9) implies that

‖v(t)‖L∞ ≤ C(v0, θ0, T, p) ∀t ∈ [0, T ]. (3.9)

(iii) W 2,p estimate for θ:

Taking operation D2 on the second equation of (B2), and then taking L2

inner product this with D2θ|D2θ|p−2, p > 2, we have after integration by
part

1

p

d

dt
‖D2θ‖p

Lp + (p− 1)κ

∫

R2

|D3θ|2|D2θ|p−2dx

= −
∫

R2

D2(v · ∇)θ D2θ|D2θ|p−2 = (p− 1)

∫

R2

D[(v · ∇)θ] D3θ|D2θ|p−2dx

= (p− 1)

∫

R2

Dv ·DθD3θ|D2θ|p−2dx + (p− 1)

∫

R2

[(v · ∇)Dθ] D3θ|D2θ|p−2dx

≤ (p− 1)

κ
‖∇θ‖2

L∞

∫

R2

|∇v|2|D2θ|p−2dx +
(p− 1)κ

4

∫

R2

|D3θ|2|D2θ|p−2dx

+
(p− 1)

κ
‖v‖2

L∞

∫

R2

|D2θ|pdx +
(p− 1)κ

4

∫

R2

|D3θ|2|D2θ|p−2dx,

11



where we used the inequality, ab ≤ a2

κ
+ κb2

4
, again. Absorbing the terms,

(p−1)κ
4

∫
R2 |D3θ|2|D2θ|p−2dx to the left hand side, we derive

d

dt
‖D2θ‖p

Lp ≤ C‖∇θ‖2
L∞‖∇v‖2

Lp‖D2θ‖p−2
Lp + C‖v‖2

L∞‖D2θ‖p
Lp

≤ C‖∇θ‖
2p−4
2p−2

Lp ‖ω‖2
Lp‖D2θ‖p− 2p−4

2p−2

Lp + C‖v‖2
L∞‖D2θ‖p

Lp

≤ C + C‖D2θ‖p
Lp ,

where we used the Gagliardo-Nirenberg interpolation inequality (2.9), the
estimates, (3.8), (3.9), and Young’s inequality(Note p− 2p−4

2p−2
< p when p > 2).

Thanks to Gronwall’s lemma, we have the estimate,

‖D2θ(t)‖Lp ≤ C(v0, θ0, T, p, κ) ∀t ∈ [0, T ], ∀p > 2.

Using the interpolation inequality (2.9) as previously, we obtain that

‖∇θ(t)‖L∞ ≤ C ∀t ∈ [0, T ], (3.10)

where C = C(‖v0‖W 2,p , ‖θ0‖W 2,p , p, κ). Similarly to the proof of Theorem
1.1, we have the embedding, Hm(R2) ↪→ W 2,p(R2), for all m > 2 and p > 2,
and thus we have reached to the estimate (2.1) for all T ∈ (0,∞) and for all
v0, θ0 ∈ Hm(R2) with m > 2.

(vi) Vanishing viscosity limit:

Let (v, p, θ) and (ṽ, p̃, θ̃) be solutions of (B2) and (B) respectively with
the same initial conditions (v0, θ0). Similarly to the case of zero diffusivity
problem in Section 2, we first note that all the estimates in (i), (ii) and (iii)
above are valid for solutions of (B) also, and these estimates are independent
of ν. The key ν-independent estimate for the solutions (ṽ, θ̃) is

‖∇ṽ‖L∞ + ‖∇θ̃‖L∞ + ‖ṽ‖W 2,p + ‖θ̃‖W 2,p ≤ C(‖v0‖W 2,p , ‖θ0‖W 2,p , κ, T, p).
(3.11)

From (B)− (B2) we obtain for Θ = θ − θ̃, P = p− p̃, V = v − ṽ

Θt + (v · ∇)Θ + (V · ∇)θ̃ = κ∆Θ (3.12)

with div V = 0, and

Vt + (v · ∇)V + (V · ∇)ṽ = −∇P + Θe2 + ν∆V + ν∆ṽ. (3.13)

Taking L2 inner product (3.12) with Θ, we have after integration by part

1

2

d

dt
‖Θ‖2

L2 + κ‖∇Θ‖2
L2 = −

∫

R2

(V · ∇)θ̃ Θdx

≤ ‖∇θ̃‖L∞‖V ‖L2‖Θ‖L2 ≤ C‖V ‖2
L2 + C‖Θ‖2

L2 ,
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where C = C(v0, θ0, T, κ), and we have used the estimate (3.11). Hence,

d

dt
‖Θ‖2

L2 ≤ C‖Θ‖2
L2 + C‖V ‖2

L2 . (3.14)

On the other hand, we take L2 inner product (3.13) with V , and integrate
by part to obtain:

1

2

d

dt
‖V ‖2

L2 + ν‖∇V ‖2
L2 = −

∫

R2

(V · ∇)ṽ · V dx

+

∫

R2

Θe2 · V dx− ν

∫

R2

∇ṽ · ∇V dx

≤ ‖∇ṽ‖L∞‖V ‖2
L2 + ‖Θ‖L2‖V ‖L2 + ν‖∇ṽ‖L2‖∇V ‖L2

≤ C(‖V ‖2
L2 + ‖Θ‖2

L2) +
ν

2
‖∇V ‖2

L2 +
ν

2
‖∇ṽ‖2

L2 ,

where C = C(v0, θ0, T, κ), and we used the estimate (3.11) again. Absorbing
the term, ν

2
‖∇V ‖2

L2 to the left hand side, we obtain that

d

dt
‖V ‖2

L2 ≤ C(‖V ‖2
L2 + ‖Θ‖2

L2) +
ν

2
‖∇ṽ‖2

L2 . (3.15)

Adding (3.15) to (3.14), and setting X(t) = ‖Θ(t)‖2
L2 + ‖V (t)‖2

L2 , we obtain
that

d

dt
X(t) ≤ CX(t) + Cν‖∇ṽ‖2

L2 .

By Gronwall’s lemma we find that

X(t) ≤ X(0)eCt + Cν

∫ t

0

‖∇ṽ(s)‖2
L2eC(t−s)ds

≤ CeCT ν

∫ T

0

‖∇ṽ(t)‖2
L2dt ≤ Cν,

where we used (3.11) and the fact that X(0) = 0. Hence, we obtain

sup
0≤t≤T

(‖v(t)− ṽ(t)‖L2 + ‖θ(t)− θ̃(t)‖L2) ≤ C
√

ν, (3.16)

where C = C(v0, θ0, T, κ). Similarly to the case of vanishing diffusivity limit,
the interpolation inequality, and the uniform in ν estimate (3.11) lead us to
the estimate, for 0 ≤ s < m,

sup
0≤t≤T

‖v(t)− ṽ(t)‖Hs ≤ C sup
0≤t≤T

‖v(t)− ṽ(t)‖σ
L2‖v(t)− ṽ(t)‖1−σ

Hm , ,

≤ C(‖v0‖Hm + ‖ṽ0‖Hm)1−σ sup
0≤t≤T

‖v(t)− ṽ(t)‖σ
L2

≤ Cν
m−s
2m , where σ = 1− s

m
and C = C(v0, θ0, T, κ, s, m),
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and similarly for ‖θ− θ̃‖Hs , we obtain the desired convergence (ṽ, θ̃) → (v, θ)
in C([0, T ]; Hs((R2)) as ν → 0. ¤

Remark after the proof: Similarly to the remark at the end of Section 2
we can actually prove the following:

Corollary 3.1 Let 2 < p < ∞, and (v0, θ0) ∈ W 2,p(R2). Then, there exists
unique solutions (v, θ) ∈ C([0,∞); W 2,p(R2)) of the system (B2). Moreover,
for each q ∈ [1, p), T ∈ (0,∞), solutions (v, θ) of (B) converges to the
corresponding solutions of (B1) in C([0, T ]; W 1,q(R2)) as ν → 0.
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