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Abstract

We obtain selfgravitating multi-string configurations for the Einstein-
Weinberg-Salam model, in terms of solutions for a nonlinear elliptic
system of Liouville type whose solvability was posed as an open prob-
lem in [15].

1 Introduction

Aim of this paper is to establish the existence of gravitating strings for
the Einstein-Weinberg-Salam theory, where the non-abelian SU(2) × U(1)-
Electroweak theory is coupled with Einstein’s equation to take into account
the effect of gravity. We shall be interested to obtain static strings, parallel
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along a given direction. Thus, in the Minkowski space R1+3 with time vari-
able t = x0 and space variables (x1, x2, x3), we consider the x3-direction as a
fixed(vertical) direction. Accordingly, we restrict the choice of gravitational
metrics to take the form:

ds2 = (dx0)2 − (dx3)2 − eη((dx1)2 + (dx2)2), (1.1)

so that the conformal factor η will define one of our unknown. Furthermore,
by formulating the Electroweak theory in terms of the unitary gauge vari-
ables, we may introduce a setting (suggested by the Ambjorn-Olesen’s vortex
ansatz [1, 2, 3]) so that, with the physical parameters specified according to
a “critical” condition, the second order Euler-Lagrange equations reduces to
selfdual first order equations of Bogomolnyi type when restricted to time in-
dependent solutions. The resulting selfdual equations are expressed in terms
of a complex valued massive field W , a scalar field ϕ and real valued 2-vector
fields P = (Pµ)µ=1,2 and Z = (Zµ)µ=1,2, which together with the conformal
factor η are assumed to depend only on the (x1, x2)-variables. The massive
field W is (weakly) coupled with the fields P and Z through the covariant
derivative in the form:

DjW = ∂jW − ig1(Pj sin θ + Zj cos θ)W, j = 1, 2 (1.2)

where g1 is the SU(2)-coupling constant, θ ∈ (0, π/2) is the Weinberg’s
mixing angle, that relates to the U(1)-coupling constant g2 via the identity:

cos θ =
g1

(g2
1 + g2

2)
1/2

.

Let P12 = ∂1P2−∂2P1 and Z12 = ∂1Z2−∂2Z1 be the curls of the vector fields
P and Z respectively, we may formulate the selfdual equations as follows:

D1W + iD2W = 0 (1.3)

P12 =
g1

2 sin θ
φ2

0e
η + 2g1 sin θ|W |2 (1.4)

Z12 =
g1

2 cos θ
(ϕ2 − φ2

0) + 2g1 cos θ|W |2 (1.5)

Zj = −2 cos θ

g1

εkj∂k log ϕ (1.6)

where φ0 is the symmetry breaking constant and εkj denotes the totally
antisymmetric symbol fixed with ε12 = 1. In this setting the reduced 2-
dimensional energy density H takes the form:

H =
1

8

g2
1φ

4
0

sin2 θ
+

g2
1

4 cos2 θ
(ϕ2 − φ2

0)
2 + g2

1ϕ
2|W |2e−η + 2e−η|∇ϕ|2, (1.7)

and we also obtain the Gauss curvature Kη = −1
2
e−η∆η relative to the

Riemann surface (R2, eηδjk) by means of the relation:

Kη = 8πGH + Λ, (1.8)
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where G is Newton’s gravitational constant, and Λ is the cosmological con-
stant that, by Einstein’s equation, must be fixed as follows:

Λ =
πGg2

1φ
2
0

sin2 θ
. (1.9)

We refer to Chapter 10 of Yang’s monograph[15] for a detailed discussion
about the derivation of those relations. We only observe that in view of (1.3),
W is required to satisfy a sort of gauge invariant version of the Cauchy-
Riemann equation. In particular this implies ([12]) that W can vanish at
isolated zeros, say {z1, · · · , zN} (repeated according to multiplicity), which
determine the string’s location.
Therefore, following [12], we may introduce new variables (u, v) such that,

eu = |W |2, ev = ϕ2 (1.10)

and see that the selfgravitating Electroweak string solution to (1.3)-(1.6) may
be expressed in terms of a triplet (u, v, η) solution in R2 for the following
elliptic system:





−∆u = g2
1e

v+η + 4g2
1e

u − 4π
N∑

k=1

δ(z − zk)

∆v =
g2
1

2 cos2 θ
[ev − φ2

0]e
η + 2g2

1e
u

−∆η = 4πGg2
1e

η

[
(ev − φ2

0)
2

cos2 θ
+

φ4
0

sin2 θ

]

+ 16πGg2
1e

u+v + 8πG|∇v|2ev,

, (1.11)

where {z1, · · · , zN} are given points (repeated with multiplicity) in R2and
correspond to the zeros of the massive field:

W (z) = exp

(
u

2
+ i

N∑

k=1

arg
z − zk

|z − zk|

)
. (1.12)

Indeed, by virtue of (1.2), (1.10) and (1.12) we can easily recover the full
string (W,ϕ, P, Z, η) solution of (1.3)-(1.6) out of the triplet (u, v, η) satisfy-
ing (1.11). Again, we refer to [15] for details, where in fact the solvability
of (1.11) is listed as a challenging open problem, in contrast, for instance,
to the analogous Einstein-Abelian-Higgs system whose string solutions have
been classified rather accurately in [13, 14]. See [15] also for more references.
Satisfactory results are available also in case we neglect the effect of gravity,
and take η = G = 0 in (1.11). In this case the resulting (2 × 2) system has
been treated in [11] and [7] to yield various classes of planar Electroweak
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vortex-like configurations, while Electroweak periodic vortices have been es-
tablished in [10] and [5].
It is the main goal of this paper to show that, if

sin2 θ

4πGφ2
0

> N + 1 (1.13)

then, for any assigned set of points {z1, · · · , zN} ⊂ R2 (repeated according
to their multiplicity) the system (1.11) admits (a one-parameter family of)
solutions satisfying the boundary conditions:∫

R2

eu < +∞,

∫

R2

eη < +∞, |∇ev| ∈ L2(R2). (1.14)

Notice that the boundary conditions (1.14) appear as “natural” in this con-
text, as they imply a finite energy property for the corresponding selfdual
string, in the sense that,∫

R2

Heη < +∞ and

∫

R2

Kηe
η < +∞ (1.15)

(see (1.7) and (1.8)). Moreover they ensure finite flux for the vector fields P
and Z. More precisely, concerning (1.3)-(1.6) we obtain the following result:

Theorem 1.1 Let N ∈ N be an integer such that (1.13) holds. For a given
set of points {z1, · · · , zN} ⊂ R2 (repeated according to their multiplicity)
there exists ε1 > 0 such that for every ε ∈ (0, ε1) there exists (W ε, ϕε, P ε, ηε),
a selfgravitating Electroweak string solution of (1.3)-(1.6) satisfying the fi-
nite energy condition (1.15) and with W ε vanishing exactly at the points
{z1, · · · , zN} according to their multiplicity.

On the basis of the above discussion, to establish Theorem 1.1 we only
need to focus about system (1.11). We are going to attack (1.11) by pertur-
bation techniques in a spirit similar to the work of Chae-Imanuvilov in [6]
for the study of non-topological Chern-Simons vortices. In fact, the pertur-
bative approach introduced in [6] has proven particularly useful to handle
elliptic systems of Liouville type in the plane. In this respect it is important
to notice that the conformal invariance of the Liouville operator: ∆u + eu

in R2, is the origin of some degeneracies that are manifested by an extreme
sensitivity of the operator under perturbations. Therefore, it is never a stan-
dard task to make perturbation technique work successfully in this context.
Concerning our system (1.11), we show how to take advantage of the specific
structure of the perturbation terms in order to limit the degeneracy effect on
the corresponding operator, so to restore a crucial invertibility property. In
this way we are able to identify a certain neighborhood in a suitable func-
tion space where to locate our solutions. This allows us to provide a rather
accurate control on the behavior of the solution at infinity, and therefore
verify (1.14). The details of our perturbative method are carried out in the
following section.
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2 Preliminaries and Statement of the Main

Result

We start by transforming (1.11) to an equivalent system. To this purpose
multiply the second equation of (1.11) by ev, and use the identity ∆ev =
ev∆v + |∇v|2ev to obtain

∆ev =
g2
1

2 cos2 θ
[ev − φ2

0]e
η+v + 2g2

1e
u+v + |∇v|2ev. (2.1)

The third equation in (1.11) added to (2.1)× 8πG gives;

∆(η + 8πGev) = −4πGg2
1φ

4
0

(
1

cos2 θ
+

1

sin2 θ

)
eη +

4πGg2
1φ

2
0

cos2 θ
eη+v.

Thus, if we introduce the notations:

λ1 = 4g2
1, λ2 = 4πGg2

1φ
4
0

(
1

cos2 θ
+

1

sin2 θ

)
, λ3 =

g2
1φ

2
0

2 cos2 θ
, λ4 = 8πG, (2.2)

we arrive to the following equivalent formulation of (1.11)

∆u = −λ1

4
ev+η − λ1e

u + 4π
N∑

k=1

δ(z − zk) (2.3)

∆(η + λ4e
v) = −λ2e

η + λ3λ4e
η+v (2.4)

∆v =
λ3

φ2
0

ev+η − λ3e
η +

λ1

2
eu, in R2. (2.5)

To construct solutions for (2.3)-(2.5) notice that the first equation (2.3) ad-
mits a “singular” Liouville-type structure, which motivates to take

∫

R2

eu < +∞ (2.6)

as a “natural” boundary condition. Since (2.6) is scale invariant under the
transform:

u(x) −→ uε(x) = u(
x

ε
) + 2 log(

1

ε
),

∀ε > 0, we can consider the ε−scaled version of (2.3)-(2.5) obtained by also
transforming:

v(x) −→ vε(x) = v(
x

ε
) + 2 log(

1

ε
)

η(x) −→ ηε(x) = η(
x

ε
) + 2 log(

1

ε
).
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In fact, in terms of the unknowns (uε, vε, ηε) system (2.3)-(2.5) takes the
form:

∆u = −ε2λ1

4
ev+η − λ1e

u + 4π
N∑

k=1

δ(z − εzk) (2.7)

∆(η + ε2λ4e
v) = −λ2e

η + ε2λ3λ4e
η+v (2.8)

∆v =
ε2λ3

φ2
0

ev+η − λ3e
η +

λ1

2
eu, in R2. (2.9)

This suggests to look for solution of (2.7)-(2.9) “close” in a suitable sense to
those of the system

∆u0 = −λ1e
u0

+ 4π
N∑

k=1

δ(z − εzk) (2.10)

∆η0 = −λ2e
η0

(2.11)

∆v0 = −λ3e
η0

+
λ1

2
eu0

, (2.12)

for which we can exhibit an explicit solution. To this purpose, we introduce
complex notation, by setting z = x1 + ix2 for every (x1, x2) ∈ R2, and define:

f(z) = (N + 1)
N∏

k=1

(z − zk), F (z) =

∫ z

0

f(ξ)dξ.

Set

fε(z) = (N + 1)
N∏

k=1

(z − εzk), and Fε(z) =

∫ z

0

fε(ξ)dξ,

then, by Liouville formula [8], we know that for every ε > 0 and a, b ∈ C,
the functions

u0
ε,a(z) = log

[
8|fε(z)|2

λ1

(
1 + |Fε(z) + a|2)2

]
, η0

b (z) = log

[
8

λ2(1 + |z + b|2)2

]

satisfy (2.10) and (2.11) respectively. Furthermore, if we set,

κ =
2λ3

λ2

(2.13)

then, we also solve (2.12) by taking,

v0
ε,a,b = log

[
1 + |Fε(z) + a|2
(1 + |z + b|2)κ

]
.
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Reasonably we may look for solution of (2.3)-(2.5) in the form:

u(z) = u0
ε,a(εz) + 2 log ε + ε2σ1(εz) (2.14)

η(z) = η0
b (εz) + 2 log ε + ε2σ2(εz) (2.15)

v(z) = v0
ε,a,b(εz) + 2 log ε + ε2σ3(εz) (2.16)

with σ1, σ2, σ3 suitable functions which identify the error terms in the expan-
sion (2.14)-(2.16) as ε → 0. Introducing the notation:

u0
ε,a(εz) + 2 log ε := log ρI

ε,a(z)

η0
b (εz) + 2 log ε := log ρII

ε,b(z)

v0
ε,a,b(εz) + 2 log ε := log ρIII

ε,a,b(z)

we see that,

ρI
ε,a(z) =

8ε2N+2|f(z)|2

λ1

(
1 + ε2N+2

∣∣F (z) + a
εN+1

∣∣2
)2

ρII
ε,b(z) =

8ε2

λ2(1 + |εz + b|2)2

ρIII
ε,a,b(z) =

ε2
(
1 + ε2N+2

∣∣F (z) + a
εN+1

∣∣2
)

(1 + |εz + b|2)κ

are well defined also for negative ε. We prove:

Theorem 2.1 Let N ∈ N be such that

κ =
2λ3

λ2

> N + 1. (2.17)

For given points {zj}N
j=1 ∈ R2 (repeated according to their multiplicity), there

exists ε1 > 0, such that for every ε ∈ (−ε1, ε1), ε 6= 0, problem (2.3)-(2.5)
admits a solution (uε, ηε, vε) of the following form:

uε(z) = log ρI
ε,a∗ε(z) + ε2w1(ε|z|) + ε2u∗1,ε(εz), (2.18)

ηε(z) = log ρII
ε,b∗ε(z) + ε2w2(ε|z|) + ε2u∗2,ε(εz) (2.19)

vε(z) = log ρIII
ε,a∗ε ,b∗ε(z) + ε2w3(ε|z|) + ε2u∗3,ε(εz), (2.20)

with ρI
ε,a∗ε(z), ρII

ε,b∗ε
(z), ρIII

ε,a∗ε ,b∗ε
(z) defined above and |a∗ε| + |b∗ε| → 0, as ε → 0.

Furthermore, the functions w1, w2, w3 are radial, and satisfy:

w1(|z|) = C1 log |z|+ O(1), (2.21)

w2(|z|) = −C2 log |z|+ O(1), (2.22)

w3(|z|) = C3 log |z|+ O(1) (2.23)
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as |z| → ∞, with explicit constants C1, C2, C3(determined in Lemma 3.1
below); while u∗1,ε, u

∗
2,ε, u

∗
3,ε satisfy:

sup
z∈R2

∑3
j=1 |u∗j,ε(εz)|

1 + log+ |z| = o(1), as ε → 0. (2.24)

In particular, (uε, ηε, vε) verifies the boundary condition (1.14).

Remark: By our construction the sufficient condition (2.17) is clearly nec-
essary to ensure the validity of the last of the boundary conditions in (1.14).
Notice that in case the parameters λj, j = 1, · · · , 4 are chosen according to
(2.2), then (2.17) reads as follws,

sin2 θ

4πGφ2
0

> N + 1,

and provides a sufficient condition for the existence of Electroweak selfgravi-
tating strings as stated in Theorem 1.1, which becomes an easy consequence
of Theorem 2.1. This condition is analogous to the necessary and sufficient
condition obtained in [14] for the existence of Abelian Higgs strings in the
Einstein-Maxwell-Higgs system. In a sense it imposes a restriction between
the total string number N and the gravitational constant G which should
be considered small. Here φ0 plays a role of symmetry breaking parameter
analogous to that in the Abelian Higgs strings model.

3 The Proof of Theorem 2.1

Following [6], we derive our result by making an appropriate use of the Im-
plicit Function Theorem([9],[16]) over the spaces:

Xα = {u ∈ L2
loc(R2) |

∫

R2

(1 + |x|2+α)|u(x)|2dx < ∞}

equipped with the norm ‖u‖2
Xα

=
∫
R2(1 + |x|2+α)|u(x)|2dx, and

Yα = {u ∈ W 2,2
loc (R2) | ‖∆u‖2

Xα
+

∥∥∥ u(x)

1 + |x|1+α
2

∥∥∥
2

L2(R2)
< ∞}

equipped with the norm ‖u‖2
Yα

= ‖∆u‖2
Xα

+
∥∥ u(x)

1+|x|1+ α
2

∥∥2

L2(R2)
, where α ∈ (0, 1

2
)

is fixed throughout this paper. For this purpose we recall the following useful
facts proved in [6].

Proposition 3.1 For α ∈ (0, 1
2
) we have:

(i) v ∈ Yα is harmonic if and only if v ≡ constant.
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(ii) There exists a constant C0 > 0 such that for all v ∈ Yα we have:

|v(x)| ≤ C0‖v‖Yα(log+ |x|+ 1), ∀x ∈ R2,

where log+ |x| = max{ log |x|, 0}.
Since we are going to search for solutions (u, η, v) in the form (2.14)-(2.16),
by direct inspection we see that the functions σj , j = 1, 2, 3 must satisfy:

∆σ1 = −λ1

4
gII

b (z)gIII
ε,a,b(z)eε2(σ2+σ3) − λ1

ε2
gI

ε,a(z)(eε2σ1 − 1) (3.1)

∆σ2 = −λ4∆[gIII
ε,a,b(z)eε2σ3 ]− λ2

ε2
gII

b (z)(eε2σ2 − 1) + λ3λ4g
II
b (z)gIII

ε,a,b(z)eε2(σ2+σ3)

(3.2)

∆σ3 =
λ3

φ2
0

gII
b (z)gIII

ε,a,b(z)eε2(σ2+σ3) − λ3

ε2
gII

b (z)(eε2σ2 − 1) +
λ1

2ε2
gI

ε,a(z)(eε2σ1 − 1),

(3.3)

where we have set

gI
ε,a(z) = euε,a , gII

b (z) = eη0
b , gIII

ε,a,b(z) = ev0
ε,a,b .

In order to determine the triplet (σ1, σ2, σ3) we are going to consider the
free parameters a, b ∈ C above as part of our unknowns. More precisely, we
concentrate around the values a = 0, b = 0, and consider the radial functions:

ρ1 = lim
ε→0

gI
ε,0 =

8(N + 1)2r2N

λ1(1 + r2N+2)2
, ρ2 = gII

0 =
8

λ2(1 + r2)2
,

and

ρ3 = lim
ε→0

gIII
ε,0 =

1 + r2N+2

(1 + r2)κ
.

Thus, by taking a = b = 0 in (3.1), (3.2) and (3.3) and letting ε → 0,
(formally) we obtain the linear system:

∆w1 + λ1ρ1w1 = −λ1

4
ρ2ρ3 (3.4)

∆w2 + λ2ρ2w2 = −λ4∆ρ3 + λ3λ4ρ2ρ3 (3.5)

∆w3 =
1

2
λ1ρ1w1 − λ3ρ2w2 +

λ3

φ2
0

ρ2ρ3. (3.6)

Consequently, if we let (w1, w2, w3) be a solution of (3.4), (3.5), (3.6) then,
under the decomposition

σj(z) = wj(z) + uj(z), j = 1, 2, 3, (3.7)
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we reduce to solve for (u1, u2, u3)the following implicit problem:

P1(u1, u2, u3, a, b, ε) = ∆u1 +
λ1

4
gII

b (z)gIII
ε,a,b(z)eε2(u2+u3+w2+w3)

+
λ1

ε2
gI

ε,a(z)(eε2(u1+w1) − 1) + ∆w1 = 0,

P2(u1, u2, u3, a, b, ε) = ∆
(
u2 + λ4g

III
ε,a,b(z)eε2(u3+w3)

)

+
λ2

ε2
gII

b (z)(eε2(u2+w2) − 1)− λ3λ4g
II
b (z)gIII

ε,a,b(z)eε2(u2+u3+w2+w3) + ∆w2 = 0,

and

P3(u1, u2, u3, a, b, ε) = ∆u3 − λ3

φ2
0

gII
b (z)gIII

ε,a,b(z)eε2(u2+u3+w2+w3)

+
λ3

ε2
gII

b (z)(eε2(u2+w2) − 1)− λ1

2ε2
gI

ε,a(z)(eε2(u1+w1) − 1) + ∆w3 = 0.

We aim to apply the Implicit Function Theorem to the operator P = (P1, P2, P3)
around the origin. For this purpose we start by constructing a suitable solu-
tion set for the above linear system (3.4)-(3.6).

Lemma 3.1 For κ > N there exists a radial solution (w1, w2, w3) of (3.4)-
(3.6) in Y 3

α satisfying:

w1(r) = C1 log r + O(1), and w′
1(r) =

C1

r
+ O(1) (3.8)

w2(r) = −C2 log r + O(1), and w′
2(r) = −C2

r
+ O(1) (3.9)

w3(r) = C3 log r + O(1), and w′
3(r) =

C3

r
+ O(1) (3.10)

as r →∞, with

C1 =
λ1

λ2

[
κ(κ− 1) · · · (κ−N)− (N + 1)!

(1 + κ)κ · · · (κ−N)

]
, and C1 > 0 for κ > N + 1;

C2 =
4(λ2 + λ3)λ4[κ

2(κ− 1) · · · (κ−N) + (κ− 2N − 2)(N + 1)!]

λ2(2 + κ)(1 + κ) · · · (κ−N)
,

and C2 > 0 for κ > N + 1;

C3 = −C1

2
− C2

λ3

λ2

+
4µ

(κ + 1)λ2

;

respectively, with µ = λ3

φ2
0
− λ2

3λ4

λ2
− λ1

8
and κ defined in (2.13).

Before going into the proof of Lemma 3.1, we recall the following properties
relative to the operators defined by the right hand side of (3.4) and (3.5),
useful also in the sequel. We refer to [6] and [4] for the proof.
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Proposition 3.2 For α ∈ (0, 1
2
) and j = 1, 2, set

Lj = ∆ + λjρj : Yα → Xα.

We have
KerLj = Span {ϕj,+, ϕj,−, ϕj,0} , (3.11)

where,

ϕ1,+ =
rN+1 cos(N + 1)θ

1 + r2N+2
, ϕ1,− =

rN+1 sin(N + 1)θ

1 + r2N+2
,

ϕ2,+ =
r cos θ

1 + r2
, ϕ2,− =

r sin θ

1 + r2
,

ϕ1,0 =
1− r2(N+1)

1 + r2(N+1)
, ϕ2,0 =

1− r2

1 + r2
.

Moreover,

ImLj = {f ∈ Xα|
∫

R2

fϕj,± = 0}. (3.12)

Proof of Lemma 3.1: Taking into account Proposition 3.2, it is possible to
use a variation of parameters formula, in order to see that a radial solution
of

∆w(r) + λ1ρ1w(r) = f(r), (3.13)

may be obtained by means of the formula:

w(r) = ϕ1,0(r)

{∫ r

0

φf (s)− φf (1)

(1− s)2
ds +

φf (1)r

1− r

}
(3.14)

with

φf (r) :=

(
1 + r2N+2

1− r2N+2

)2
(1− r)2

r

∫ r

0

ϕ1,0(t)tf(t)dt,

and

ϕ1,0(r) :=
1− r2N+2

1 + r2N+2
,

where φf (1) and w1(1) are the well-defined limits of φf (r) and w1(r), as
r → 1. See [6] and [4]. To obtain w1 we use formula (3.14) with f(r) =
−λ1

4
ρ2(r)ρ3(r). We find,

w1(r) = −λ1

4
ϕ1,0(r)

∫ r

2

(
1 + s2N+2

1− s2N+2

)2
A1(s)

s
ds + O(1) (3.15)

as r →∞, where

A1(s) =

∫ s

0

ϕ1,0(t)tρ2(t)ρ3(t)dt.
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Since ϕ1,0(r) → −1 and ϕ′1,0(r) → 0 as r →∞, to obtain (3.8) we only need
to evaluate,

A1 = A1(∞) =

∫ ∞

0

ϕ1,0(r)rρ2(r)ρ3(r)dr

=
8

λ2

∫ ∞

0

(1− r2N+2)r

(1 + r2)2+κ
dr

=
4

λ2

∫ ∞

0

1− tN+1

(1 + t)2+κ
dt

=
4

λ2

[
1

1 + κ
− (N + 1)!

(1 + κ)κ · · · (κ−N)

]

=
4

λ2

[
κ(κ− 1) · · · (κ−N)− (N + 1)!

(1 + κ)κ · · · (κ−N)

]
.

So, A1 > 0 for κ > N + 1, and (3.8) is proved. To obtain w2 we use the
analogous of formula (3.14) for the operator L2 which now holds with N = 0
and ϕ2,0 to replace ϕ1,0. Exactly as above we reduce to evaluate,

A2 = A2(∞) =

∫ ∞

0

ϕ2,0(r)f(r)rdr, (3.16)

with f(r) = λ3λ4ρ2ρ3 − λ4∆ρ3. Since ϕ2,0 ∈ KerL2, integration by part,
yields to the identity,

∫ ∞

0

ϕ2,0∆ρ3rdr =

∫ ∞

0

∆ϕ2,0ρ3rdr = −λ2

∫ ∞

0

ϕ2,0ρ2ρ3rdr. (3.17)

Consequently,

A2 = (λ2 + λ3)λ4

∫ ∞

0

ϕ2,0ρ2ρ3rdr

=
8(λ2 + λ3)λ4

λ2

∫ ∞

0

(1− r2)(1 + r2N+2)

(1 + r2)3+κ
rdr

=
4(λ2 + λ3)λ4

λ2

∫ ∞

0

(1− t)(1 + tN+1)

(1 + t)3+κ
dt

=
4(λ2 + λ3)λ4

λ2

∫ ∞

0

[
1

(1 + t)3+κ
− t

(1 + t)3+κ
+

tN+1

(1 + t)3+κ
− tN+2

(1 + t)3+κ

]
dt

12



=
4(λ2 + λ3)λ4

λ2

[
1

2 + κ
− 1

(2 + κ)(1 + κ)
+

(N + 1)!

(2 + κ)(1 + κ) · · · (1 + κ−N)

− (N + 2)!

(2 + κ)(1 + κ) · · · (κ−N)

]

=
4(λ2 + λ3)λ4

λ2(2 + κ)(1 + κ) · · · (κ−N)
[(κ + 1)κ · · · (κ−N)− κ(κ− 1) · · · (κ−N)

+(κ−N)(N + 1)!− (N + 2)!]

=
4(λ2 + λ3)λ4[κ

2(κ− 1) · · · (κ−N) + (κ− 2N − 2)(N + 1)!]

λ2(2 + κ)(1 + κ) · · · (κ−N)
, (3.18)

and, (3.9) is also proved. In order to obtain w3 with the given asymptotic
expansion, we use the following decomposition:

w3(r) = −w1(r)

2
+

λ3

λ2

w2(r) +
λ3λ4

λ2

ρ3(r) + ϕ(r), (3.19)

where ϕ is a regular radial function satisfying:

∆ϕ =

(
λ3

φ2
0

− λ2
3λ4

λ2

− λ1

8

)
ρ2ρ3.

Set

µ =
λ3

φ2
0

− λ2
3λ4

λ2

− λ1

8
, (3.20)

Incidentally notice that by the choice of λj, j = 1, · · · , 4, as in (2.2) we have

µ =
g2
1

2
sin4 θ(1 + cos2 θ). Hence,

rϕ′(r) =
8µ

λ2

∫ r

0

(1 + r2N+2)r

(1 + r2)κ+2
dr =

4µ

λ2

∫ r2

0

1 + tN+1

(1 + t)κ+2
dt

=
4µ

λ2(κ + 1)

(
1− 1

(1 + r2)κ+1

)
+

4µ

λ2

∫ r2

0

tN+1

(1 + t)κ+2
dt.

Consequently, using the fact that κ > N , as r → +∞ we find
rϕ′(r) → 4µ

λ2(κ+1)
and,

ϕ(r) =
4µ

(κ + 1)λ2

log r + O(1).

In view of (3.19) we derive the desired conclusion for w3, and complete the
proof.¤

Remark: Observe that with the choice of (w1, w2, w3) as in Lemma 3.1 and
the condition κ > N + 1, for 0 < α < min{1

2
, κ−N − 1} there exists ε0 > 0

such that the operator P = (P1, P2, P3) defined above is a continuous map-
ping from Ωε0 = {(u, a, b, ε) ∈ Yα

3 × C2 × R : ‖u‖Yα
3 + |a| + |b| + |ε| < ε0}
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into Xα
3 and P (0, 0, 0, 0, 0, 0) = 0.

Next we proceed to compute the linearized operator of P around zero. From
tedious but not difficult computations we see that, for a = a1 + ia2 and
b = b1 + ib2, we have

∂gI
ε,a(z)

∂a1

∣∣∣∣∣
(a,ε)=(0,0)

= −4ρ1ϕ1,+,
∂gI

ε,a(z)

∂a2

∣∣∣∣∣
(a,ε)=(0,0)

= −4ρ1ϕ1,−,

∂gII
b (z)

∂b1

∣∣∣∣
b=0

= −4ρ2ϕ2,+,
∂gII

b (z)

∂b2

∣∣∣∣
b=0

= −4ρ2ϕ2,−,

∂gIII
ε,a,b(z)

∂a1

∣∣∣∣∣
(a,b,ε)=(0,0,0)

= 2ρ3ϕ1,+,
∂gIII

ε,a,b(z)

∂a2

∣∣∣∣∣
(a,b,ε)=(0,0,0)

= 2ρ3ϕ1,−,

∂gIII
ε,a,b(z)

∂b1

∣∣∣∣∣
(a,b,ε)=(0,0,0)

= −4λ3

λ2

ρ3ϕ2,+,
∂gIII

ε,a,b(z)

∂b2

∣∣∣∣∣
(a,b,ε)=(0,0,0)

= −4λ3

λ2

ρ3ϕ2,−,

∂gII
b (z)gIII

ε,a,b(z)

∂a1

∣∣∣∣∣
(a,b,ε)=(0,0,0)

= 2ρ2ρ3ϕ1,+,
∂gII

b (z)gIII
ε,a,b(z)

∂a2

∣∣∣∣∣
(a,b,ε)=(0,0,0)

= 2ρ2ρ3ϕ1,−,

∂gII
b (z)gIII

ε,a,b(z)

∂b1

∣∣∣∣∣
(a,b,ε)=(0,0,0)

= −4(1 +
λ3

λ2

)ρ2ρ3ϕ2,+,

∂gII
b (z)gIII

ε,a,b(z)

∂b2

∣∣∣∣∣
(a,b,ε)=(0,0,0)

= −4(1 +
λ3

λ2

)ρ2ρ3ϕ2,−.

Therefore, setting

P ′
(u1,u2,u3,a,b)(0, 0, 0, 0, 0, 0)[v1, v2, v3, α, β] = A[v1, v2, v3, α, β],

we can check that for A = (A1,A2,A3), α = α1 + iα2 and β = β1 + iβ2 we
have:

A1[v1, v2, v3, α, β] = ∆v1 + λ1ρ1v1

+λ1

[
−4ρ1w1 +

1

2
ρ2ρ3

]
(ϕ1,+α1 + ϕ1,−α2)

−λ1(
λ3

λ2

+ 1)ρ2ρ3(ϕ2,+β1 + ϕ2,−β2), (3.21)

A2[v1, v2, v3, α, β] = ∆v2 + λ2ρ2v2

−2λ3λ4ρ2ρ3(ϕ1,+α1 + ϕ1,−α2)− 2λ4∆[ρ3(ϕ1,+α1 + ϕ1,−α2)]

−4

[
λ2ρ2w2 − λ3λ4(1 +

λ3

λ2

)ρ2ρ3

]
(ϕ2,+β1 + ϕ2,−β2)

−4
λ4λ3

λ2

∆[ρ3(ϕ2,+β1 + ϕ2,−β2)], (3.22)
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and

A3[v1, v2, v3, α, β] = ∆v3 + λ3ρ2v2 − λ1

2
ρ1v1

+

[
2λ1ρ1w1 − 2λ3

φ2
0

ρ2ρ3

]
(ϕ1,+α1 + ϕ1,−α2)

−
[
4λ3ρ2w1 − 4λ3

φ2
0

(
λ3

λ2

+ 1)ρ2ρ3

]
(ϕ2,+β1 + ϕ2,−β2).

(3.23)

It is interesting to note that although we need the condition κ > N + 1 in
order to have that the operator P is well defined from Yα

3 × C2 × (−ε0, ε0)
into Xα

3, its linearized operator at the origin, A = (A1,A2,A3), given in
(3.21)-(3.23), appears to be well defined from Yα

3 × C2 into Xα
3 only under

the weaker assumption κ > N , which also suffices to ensure the following
crucial properties:

Proposition 3.3 If κ > N , then the operator A : (Yα)3 × (C)2 → (Xα)3

given by (3.21)-(3.23) is onto. Moreover,

KerA = Span

{
(0, 0, 1); (ϕ1,±, ϕ2,±,−1

2
ϕ1,± +

λ3

λ2

ϕ2,±);

(ϕ1,0, ϕ2,0,−1

2
ϕ1,0 +

λ3

λ2

ϕ2,0); (ϕ1,±, ϕ2,0,−1

2
ϕ1,± +

λ3

λ2

ϕ2,0);

(ϕ1,0, ϕ2,±,−1

2
ϕ1,0 +

λ3

λ2

ϕ2,±)

}
× {(0, 0)}2. (3.24)

In order to prove the proposition above we establish the following,

Lemma 3.2 Let κ > N , then

I±1 :=

∫

R2

[
−4ρ1w1 +

1

2
ρ2ρ3

]
ϕ2

1,±dx =
2π

λ2(κ + 1)
, (3.25)

and

I±2 :=

∫

R2

[
−λ2ρ2w2 + λ3λ4(

λ3

λ2

+ 1)ρ2ρ3

]
ϕ2

2,±dx

−λ3λ4

λ2

∫

R2

∆(ρ3ϕ2,±)ϕ2,±dx

=
πλ4(N + 1)!(N + 1)

(1 + κ)κ · · · (1 + κ−N)

(3.26)

with w1 and w2 as given by Lemma 3.1.
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Proof: We prove (3.25) by recalling the formula

L1

[
1

(1 + r2N+2)2

]
=

16(N + 1)2r4N+2

(1 + r2N+2)4
,

and computing,

I±1 =

∫ 2π

0

∫ ∞

0

[
−4ρ1w1 +

1

2
ρ2ρ3

]
r2N+2

(1 + r2N+2)2

{
cos2(N + 1)θ
sin2(N + 1)θ

}
rdrdθ

= π

∫ ∞

0

[
−32(N + 1)2r2N

λ1(1 + r2N+2)2
w1 +

1

2
ρ2ρ3

]
r2N+2

(1 + r2N+2)2
rdr

= π

∫ ∞

0

{
− 2

λ1

L1

[
1

(1 + r2N+2)2

]
w1 +

ρ2ρ3r
2N+2

2(1 + r2N+2)2

}
rdr

= π

∫ ∞

0

{
− 2

λ1

L1w1

(1 + r2N+2)2
+

ρ2ρ3r
2N+2

2(1 + r2N+2)2

}
rdr

= π

∫ ∞

0

{
ρ2ρ3

2(1 + r2N+2)2
+

ρ2ρ3r
2N+2

2(1 + r2N+2)2

}
rdr

=
π

2

∫ ∞

0

ρ2ρ3

(1 + r2N+2)
rdr =

4π

λ2

∫ ∞

0

rdr

(1 + r2)κ+2
=

2π

λ2(κ + 1)
,

where, the integration by parts performed above is justified by the asymptotic
behavior (in Lemma 3.1) of w1 and its derivative, as r → +∞. In order to
prove (3.26) we use integration by part to obtain:

I±2 =

∫

R2

[
−λ2ρ2w2 + λ3λ4(1 +

λ3

λ2

)ρ2ρ3

]
ϕ2

2,±dx

−λ3λ4

λ2

∫

R2

ρ3ϕ2,±∆ϕ2,±dx

=

∫

R2

[
−λ2ρ2w2 + λ3λ4(2 +

λ3

λ2

)ρ2ρ3

]
ϕ2

2,±dx, (3.27)

where again by (3.11) we used that −∆ϕ2,± = λ2ρ2ϕ2,±. In view of the
identity:

L2

[
1

(1 + r2)2

]
=

16r2

(1 + r2)4
,
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we may transform the first term of I±2 as follows

−
∫

R2

λ2ρ2w2ϕ
2
2,±dx

= −
∫ ∞

0

∫ 2π

0

λ2ρ2w2
r2

(1 + r2)2

{
cos2 θ
sin2 θ

}
rdrdθ

= −8π

∫ ∞

0

r2

(1 + r2)4
w2rdr = −π

2

∫ ∞

0

L2

[
1

(1 + r2)2

]
w2rdr

= −π

2

∫ ∞

0

L2w2

(1 + r2)2
rdr

= −π

2

∫ ∞

0

1

(1 + r2)2
[λ3λ4ρ2ρ3 − λ4∆ρ3] rdr,

where we used (3.5) to derive the last identity. Substituting this result into
(3.27), we find,

I±2 = −π

2
λ3λ4

∫ ∞

0

ρ2ρ3

(1 + r2)2
rdr +

π

2
λ4

∫ ∞

0

∆ρ3

(1 + r2)2
rdr

+πλ3λ4(2 +
λ3

λ2

)

∫ ∞

0

ρ2ρ3r
3

(1 + r2)2
dr

= J1 + J2 + J3.

We can rewrite J1, J3 as follows

J1 = − π

16
λ2λ3λ4

∫ ∞

0

ρ2
2ρ3rdr, (3.28)

J3 =
π

8
λ2λ3λ4(2 +

λ3

λ2

)

∫ ∞

0

ρ2
2ρ3r

3dr. (3.29)

Also observe that,
∆ρ2 = λ2(2r

2 − 1)ρ2
2,

as it can be easily checked. Therefore, for κ > N we can perform integration
by parts and obtain,

J2 =
π

16
λ2λ4

∫ ∞

0

∆ρ3ρ2rdr =
π

16
λ2λ4

∫ ∞

0

ρ3∆ρ2rdr

=
π

16
λ2

2λ4

∫ ∞

0

(2r3 − r)ρ2
2ρ3dr. (3.30)
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Consequently,

I±2 = J1 + J2 + J3

=
π

16
λ2λ3λ4

∫ ∞

0

[
(4 + 2

λ3

λ2

)r3 − r

]
ρ2

2ρ3dr

+
π

16
λ2

2λ4

∫ ∞

0

(2r3 − r)ρ2
2ρ3dr

=
π

32
λ2

2λ4κ

∫ ∞

0

[
(4 + κ)r3 − r

]
ρ2

2ρ3dr

+
π

16
λ2

2λ4

∫ ∞

0

(2r3 − r)ρ2
2ρ3dr

=
π

32
λ2

2λ4(κ + 2) [(κ + 2)K1 −K2] , (3.31)

where,

K1 =

∫ ∞

0

r3ρ2
2ρ3dr, and K2 =

∫ ∞

0

rρ2
2ρ3dr.

We evaluate,

K1 =
64

λ2
2

∫ ∞

0

r3(1 + r2N+2)

(1 + r2)4+κ
dr

=
32

λ2
2

[∫ ∞

0

t

(1 + t)4+κ
dt +

∫ ∞

0

tN+2

(1 + t)4+κ
dt

]

=
32

λ2
2

[
1

(3 + κ)(2 + κ)
+

(N + 2)!

(3 + κ)(2 + κ) · · · (1 + κ−N)

]
,

(3.32)

and

K2 =
64

λ2
2

∫ ∞

0

r(1 + r2N+2)

(1 + r2)4+κ
dr

=
32

λ2
2

[∫ ∞

0

1

(1 + t)4+κ
dt +

∫ ∞

0

tN+1

(1 + t)4+κ
dt

]

=
32

λ2
2

[
1

3 + κ
+

(N + 1)!

(3 + κ)(2 + κ) · · · (2 + κ−N)

]
.

(3.33)
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Substituting (3.32) and (3.33) into (3.31), we obtain

I±2 = π(κ + 2)λ4

[
1

3 + κ
+

(N + 2)!

(3 + κ)(1 + κ)κ · · · (1 + κ−N)

− 1

3 + κ
− (N + 1)!

(3 + κ)(2 + κ) · · · (2 + κ−N)

]

=
π(κ + 2)λ4(N + 1)![(N + 2)(2 + κ)− (1 + κ−N)]

(3 + κ)(2 + κ) · · · (1 + κ−N)

=
πλ4(N + 1)!(N + 1)

(1 + κ)κ · · · (1 + κ−N)
.

This completes the proof of Lemma 3.2. ¤

Proof of Proposition 2.3: Given f = (f1, f2, f3) ∈ (Xα)3, we need to
show the solvability in Yα

3 × C2 of the linear equation:

A[v1, v2, v3, α, β] = f. (3.34)

Equivalently,

L1v1 + λ1

[
−4ρ1w1 +

1

2
ρ2ρ3

]
(ϕ1,+α1 + ϕ1,−α2)

−λ1(
λ3

λ2

+ 1)ρ2ρ3(ϕ2,+β1 + ϕ2,−β2) = f1, (3.35)

L2v2 − 2λ3λ4ρ2ρ3(ϕ1,+α1 + ϕ1,−α2)− 2λ4∆[ρ3(ϕ1,+α1 + ϕ1,−α2)]

−4

[
λ2ρ2w2 − λ3λ4(

λ3

λ2

+ 1)ρ2ρ3

]
(ϕ2,+β1 + ϕ2,−β2)

−4
λ4λ3

λ2

∆[ρ3(ϕ2,+β1 + ϕ2,−β2)] = f2,

(3.36)

∆v3 + λ3ρ2v2 − λ1

2
ρ1v1 +

[
2λ1ρ1w1 − 2λ3

ϕ2
0

ρ2ρ3

]
(ϕ1,+α1 + ϕ1,−α2)

−
[
4λ3ρ2w1 − 4λ3

ϕ2
0

(
λ3

λ2

+ 1)ρ2ρ3

]
(ϕ2,+β1 + ϕ2,−β2) = f3. (3.37)

By the orthogonality property of the system {ϕ1,±, ϕ2,±} and Lemma 3.2, we
can explicitly determine,

α1 = −λ2(κ + 1)

2πλ1

∫

R2

f1ϕ1,+, α2 = −λ2(κ + 1)

2πλ1

∫

R2

f1ϕ1,−
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in (3.35) in order to verify

(L1v1, ϕ1,±)L2 = 0. (3.38)

Similarly by (3.26) we can choose β1, β2 in (3.36) so that

(L2v2, ϕ2,±)L2 = 0. (3.39)

With such choice of α1, α2 and β1, β2 we are in position to use (3.12), to
obtain v1, v2 ∈ Yα, solution respectively to (3.35) and (3.36). At this point,
set

g = −λ3ρ2v2 +
λ1

2
ρ1v1 −

[
2λ1ρ1w1 − 2λ3

ϕ2
0

ρ2ρ3

]
(ϕ1,+α1 + ϕ1,−α2)

+

[
4λ3ρ2w1 − 4λ3

ϕ2
0

(
λ3

λ2

+ 1)ρ2ρ3

]
(ϕ2,+β1 + ϕ2,−β2) + f3 ∈ Xα,

and observe that (3.37) is solvable in Yα with corresponding solution given
by

v3(x) =
1

2π

∫

R2

log(|x− y|)g(y)dy

+C (3.40)

for any constant C ∈ R. So the operator A is onto. Furthermore, KerA can
be determined by letting f1 = f2 = f3 = 0 in the above argument, which
leads to α1 = 0 = α2 and β1 = 0 = β2 and v3 = −1

2
v1 + λ3

λ2
v2 + C with

vj ∈ KerLj, j = 1, 2 and any constant C ∈ R (see Proposition 3.1 part
(i)). Therefore the desired conclusion (3.24) follows by taking into account
Proposition 3.2. ¤

Proof of Theorem 2.1: We decompose (Yα)3 × C2 = Uα ⊕ KerA with
Uα = (KerA)⊥, so that

A = P ′
(u1,u2,u3,a,b)(0, 0, 0, 0, 0, 0) : Uα → (Xα)3

defines an isomorphism. The standard implicit function theorem
(see e.g. [9], [16]), applies to the operator P : Uα × (−ε0, ε0) → (Xα)3,
for sufficiently small ε0, and implies that there exists ε1 ∈ (0, ε0) and a
continuous function:

ε 7→ ψε = (u∗1,ε, u
∗
2,ε, u

∗
3,ε, a

∗
ε, b

∗
ε)

from (−ε1, ε1) into a neighborhood of the origin in Uα such that,

P (u∗1,ε, u
∗
2,ε, u

∗
3,ε, a

∗
ε, b

∗
ε, ε) = 0, for all ε ∈ (−ε1, ε1),
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and u∗j,ε=0 = 0 for every j = 1, 2, 3, and a∗ε=0 = 0 = b∗ε=0. Consequently,

u(z) = log ρI
ε,a∗ε(z) + ε2w1(εz) + ε2u∗1,ε(εz)

η(z) = log ρII
ε,b∗ε(z) + ε2w2(εz) + ε2u∗2,ε(εz)

v(z) = log ρIII
ε,a∗ε ,b∗ε(z) + ε2w3(εz) + ε2u∗3,ε(εz) (3.41)

defines a solution for the system (2.3)-(2.5), ∀ε ∈ (−ε1, ε1), ε 6= 0.
Furthermore, from Proposition 3.1 we have that,

|u∗j,ε(x)| ≤ C‖u∗j,ε‖Yα(log+ |x|+ 1) ≤ C‖ψε‖Uα(log+ |x|+ 1), j = 1, 2, 3,

with
‖ψε‖Uα → 0, as ε → 0.

Therefore,

sup
R2

|u∗j,ε(εx)|
1 + log+ |x| = o(1) (3.42)

as ε → 0. Since (2.17) holds, then the explicit form of ρI
ε,a∗ε(z), ρII

ε,b∗ε
(z),

ρIII
ε,a∗ε ,b∗ε

(z), together with the asymptotic behaviors of w1, w2, w2 described in
Lemma 3.1 and (3.42) imply that the solution (uε, ηε, vε) in (3.41) satisfies
also the boundary condition (1.14). This completes the proof of Theorem
2.1.¤

Final Remarks:

(i) By a complete application of the Implicit Function Theorem(e.g. [9]),
we can actually claim the existence of a family of solutions depending
on a number of parameters that equals the dimension of kerA.

(ii) By a minor modification of the proof presented above, we can actually
include equality in (2.17). In this case the image of the operator P
is mapped into the space (Xα−δ0)

3 for suitable δ0 sufficiently small.
Notice that, according to Lemma 3.1 the function wj, j = 1, 2, 3 are
bounded in this case, while w3 diverges at infinity with logarithmic
growth. As a consequence the resulting string solution no longer admits
finite energy in this case. It is an interesting question to know whether
or not problem (2.3),(2.4) and (2.5) admits a solution when (2.17) is
violated, or more precisely,

2λ3

λ2

< N + 1. (3.43)

By our discussion, it seems reasonable to expect an existence result to
hold under the assumption: 2λ3

λ2
> N . However, under (3.43) we see

that the function w3 admits a power growth at infinity, and so it fails
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to belong to Yα. Therefore a modified functional framework is required
in order to handle this situation. On the other hand, by the above dis-
cussion also follows that, as far as selfgravitating Electroweak solutions
are concerned, (1.13) seem to occur also as a necessary condition in
order to guarantee the finite energy property (1.15).
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