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Abstract

We present a coupled moving mesh and level set method for computing incom-

pressible two-phase flow with surface tension. This work extends a recent work of

Di et al. [SIAM J. Sci. Comput., 26 (2005), pp. 1036-1056] where a moving mesh

strategy was proposed to solve the incompressible Navier-Stokes equations. With the

involvement of the level set function and the curvature of the interface, some subtle

issues in the moving mesh scheme, in particular the solution interpolation from the

old mesh to the new mesh and the choice of monitor functions, require careful consid-

erations. In this work, a simple monitor function is proposed that involves both the

level set function and its curvature. The purpose for designing the coupled moving

mesh and level set method is to achieve higher resolution for the free surface by using

a minimum amount of additional expense. Numerical experiments for air bubbles and

water drops are presented to demonstrate the effectiveness of the proposed scheme.
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1 Introduction

In this paper, we will describe a moving mesh level set approach for computing incompress-

ible two-phase flow with surface tension. The flow we consider has discontinuous density

and viscosity, and is characterized by large density and viscosity ratios at the free surface,

e.g. air and water. The main existing computational methods used to solve incompress-

ible two-phase flow problems include front-tracking methods, boundary integral methods,

volume-of-fluid methods, and level set methods, and boundary condition capturing meth-

ods; see, e.g., [5, 45, 26, 36]. Alternative sharp interface works include boundary condition

capturing methods [25, 20] and finite element based level set methods [44] for simulating

multiphase incompressible flows.

Our goal in this work is to use the ideas in the level set approach [32] and in the moving

mesh method for incompressible flow simulations of [12] to compute incompressible two-

phase flow with surface tension. The level set method was devised by Osher and Sethian [32]

as a simple and versatile method for computing and analyzing the motion of an interface

in two or three space dimensions. Assume that Γ bounds a (possibly multiply connected)

region Ω. The goal is to compute the subsequent motion of Γ under a velocity field u.

This velocity can depend on position, time, the geometry of the interface, and the external

physics. The interface is captured for later time as the zero level set of a smooth (at

least Lipschitz continuous) function φ(x, t); i.e., Γ(t) = {x|φ(x, t) = 0}. This deceptively

trivial statement is of great significance for numerical computation, primarily because it

can naturally capture the change of topology in the fluid interface, such as merging and

breaking. Furthermore, the level set method can be generalized easily to three dimensions.

One of the purposes of this work is to apply the level set method on a dynamically

moving grid. The basic idea of moving mesh method is to construct a transformation from

a logical domain (or called computational domain) to the physical domain. A fixed mesh

is given on the logical domain, and the transformation is realized by solving moving mesh

PDEs or minimization problems for a mesh functional. By connecting points in the physical

space corresponding to discrete points in the parameter space, the physical domain can be

covered with a computational mesh suitable for the solution of finite difference/element

equations; see, e.g., [3, 23, 47]. The key ingredients of the moving mesh methods include:

• Mesh equations. The mesh equations determine a one-to-one mapping from a

regular domain in a parameter space to an irregularly shaped domain in physical

space. By connecting points in the physical space corresponding to discrete points in

the parameter space, the physical domain can be covered with a computational mesh

suitable for the solution of finite difference/element equations. Choosing suitable

mesh equations and solving them efficiently are very crucial for an effective moving

mesh method;

• Monitor function. A monitor function is used to guide the mesh redistribution.

It may depend on the solution arc-length (in 1D), curvature, and a posteriori errors.
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In practice, local (spatial) smoothing of the monitor function is necessary, see, e.g.,

[8, 39];

• Interpolations. If the mesh equations are time-dependent and are solved simultane-

ously with the given differential equations, then interpolation of dependent variables

from the old mesh to the new mesh is unnecessary. Otherwise, some kind of inter-

polation is required to pass the solution information on the old mesh to the newly

generated mesh.

In [14], Dvinsky suggests that harmonic function theory may provide a general frame-

work for developing useful mesh generators. Unlike most other generalizations which add

terms or functionals to the basic Winslow grid generator, Dvinsky’s approach uses a single

functional to accomplish the adaptive mapping. The critical points of this functional are

harmonic maps. Motivated by the work of Dvinsky, a moving mesh finite element strategy

based on harmonic mapping was proposed and studied by the authors in [21, 22]. The

key idea of this strategy is to construct the harmonic map between the physical space

and a parameter space by an iteration procedure. The idea of iterative mesh generations

was used before, e.g., in spectral methods with co-ordinate transformations [42, 24]. The

overall scheme proposed in [21] contains two parts: a solution algorithm and a mesh gen-

eration algorithm. These two parts are independent in the sense that the change of the

physical PDEs will affect the first part only. In [12], a moving mesh scheme for solving the

incompressible Navier-Stokes equations in the primitive variables formulation is developed

using the moving mesh finite element strategy of [21]. The main effort in [12] is to design

a divergence-free interpolation which is very essential for the incompressible problems. By

some careful analysis, it is concluded that the interpolation can be implemented by solving

a linearized inviscid Navier-Stokes-type equations.

Recently, methods that couple two different schemes have been developed for simulating

fluid flows with moving interfaces. Examples are the coupled level set and volume-of-fluid

(VOF) method [35], the hybrid particle level set method [16], and the mixed markers and

VOF method [2]. A coupled method takes advantage of the strengths of each of the two

methods, and are therefore superior to either method alone. More recently, Yang et al. [46]

proposed an adaptive coupled level set and VOF volume tracking method for unstructured

triangular grids. The use of the adaptive unstructured grids can cluster the grid near

the interface, and therefore enhance the efficiency and accuracy for solving the interface

structures. The adaptive algorithms used in [46] are based on the adaptive mesh algorithm

developed in [1, 48]. The adaptive coupled level set and VOF volume tracking technique

has been demonstrated powerful in resolving complex interface changes and interfaces of

high curvature. The spatially adaptive techniques for level set methods and incompressible

flow have been recently reviewed by Losasso, Fedkiw and Osher [27] who discussed both

historical and most recent works in this research direction, including [28] which proposes

the first octree algorithms for free surface flows using the level set method (see also [19]).

In the present work, we will add an adaptive moving grid subroutine to the standard
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level set algorithm for simulating fluid flows with moving interfaces. Ideally, for the moving

interface problems we would like the mesh to be clustered within the interface region to

correctly capture the effects of surface tension, while at the same time providing sufficient

resolution away from the interface using less grid points. With the involvement of the

level set function and the curvature of the interface, some subtle issues in the moving mesh

scheme, in particular the solution interpolation from the old mesh to the new mesh and the

choice of monitor functions, require careful considerations. In this work, a simple monitor

function is proposed that involves both the level set function and its curvature, and the

Navier-Stokes equations are solved by using a standard mixed finite element approximation.

It will be demonstrated that the moving-mesh-level-set approach proposed in this work can

resolve complex interface structures very efficiently. The main advantages of the method

are that it is relatively simple and that, compared to non-adaptive method, fewer elements

are needed while still keeping the mesh sufficiently refined near the interface regions.

The paper is organized as follows. In Section 2, the governing equations for the level

set approach and the incompressible Navier-Stokes equations involving free surfaces will

be described. The level set evolution scheme on a fixed grid will be described in Section

3. A complete moving mesh scheme designed for two-phase problems will be introduced

in Section 4. A number of illustrative examples will be considered in Section 5. Some

concluding remarks will be made in the final section.

2 Governing equations

The level set approach [32] has been used for computing moving boundaries which are

singular or extremely thin with sharp gradients. A level set function φ(x, t) is defined to

be a smooth function which is positive in the liquid and negative in the gas, with the zero

level set of φ(x, t) representing the moving interface at time t.

When the underlying velocity field u is specified, the advection step involves the solution

of the scalar transport equation for φ,

φt + u · ∇φ = 0. (2.1)

The unit normal on the interface, pointing from the gas into the liquid, and the curvature

of the interface can be expressed in terms of φ(x, t):

n =
∇φ

|∇φ|

∣

∣

∣

∣

φ=0

, κ = ∇ ·

(

∇φ

|∇φ|

)
∣

∣

∣

∣

φ=0

. (2.2)

Suppose that µg and µl are the viscosity for gas and liquid respectively, ρg and ρl are the

density for gas and liquid respectively. Then continuous nondimensionalized viscosity and

density can be defined as

µ(φ) = µg/µl +H(φ)(1 − µg/µl), ρ(φ) = ρg/ρl +H(φ)(1 − ρg/ρl),
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where H(φ) is the Heaviside function defined by

H(φ) =







0, if φ < 0,
1
2
, if φ = 0,

1, if φ > 0.

The governing equations for the two-dimensional incompressible Navier-Stokes equations

separated by a free surface was derived in [10]:

ρ(ut + u · ∇u) = ∇ · (2µD) −∇p+ σκδ(φ)∇φ+ ρg,

∇ · u = 0,
(2.3)

where u = (u, v) is the fluid velocity, ρ = ρ(x, t) is the fluid density, µ = µ(x, t) is the fluid

viscosity, D = 1
2
[(∇u) + (∇u)T ] is the viscous stress tensor. The only body force being

considered is the gravity denoted as g. The surface tension term is considered to be a force

concentrated on the interface. We denote σ as the surface tension coefficient and δ as the

Dirac delta function. After a standard non-dimensionalization procedure, we have

ρ(ut + u · ∇u) =
1

Re
∇ · (2µD) −∇p+

1

Fr
ρg +

1

We
κδ(φ)∇φ. (2.4)

The dimensionless parameters used are Reynolds number, Re = ρlLU/µl, Froude number,

Fr = U2/gL and Weber number, We = ρlLU
2/σ.

It is noted that (2.4) involves a delta function, and it is discovered recently in [15, 43]

that level set methods can suffer from O(1) errors with the typical delta function approach.

Therefore, caution has to be taken when dealing with the delta function.

3 Level set evolution

The level set evolution equation (2.1) can be reformulated as

φt + F (∇φ,x)|∇φ| = f(x),

F (∇φ,x) =
u · ∇φ

|∇φ|
, f(x) = 0.

(3.1)

The above problem is solved by using the explicit positive coefficient scheme with triangular

elements proposed by Barth and Sethian [4]. The algorithm can be summarized in Table

1.

We will give the interface a thickness as was done in the work of [36]. Numerically, we

substitute the smoothed Heaviside function Hǫ(φ) for the sharp Heaviside function H(φ).

By giving the interface a thickness of 2ǫ, the smoothed Heaviside function is defined as

Hǫ(φ) =















0, φ < −ǫ,
1

2
+
φ

2ǫ
+

1

2π
sin (πφ/ǫ), −ǫ ≤ φ ≤ ǫ,

1, φ > ǫ.

(3.2)
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Table 1: The algorithm of the explicit positive coefficient scheme for (3.1).

1. Initialize φ∗
i = ωi = 0, i = 1, · · · , |V |.

2. For each triangle T , i = 1, 2, 3:

Ni(x) ∈ P1, Ni(xj) = δij , j = 1, 2, 3, x ∈ T,

F =
1

meas(T )

∫

T

u · ∇φ

|∇φ|
dx, ni = 2meas(T )∇Ni, ∇φ =

3
∑

j=1

∇Njφj ,

Ki =
F∇φ · ni

2|∇φ|
, δφ =

3
∑

l=1

Klφl, δφi = K+
i

3
∑

l=1

K−
l (φi − φl)/

3
∑

l=1

Kl,

αi = max(0, δφi/δφ)/
3

∑

l=1

max(0, δφl/δφ), φ∗
i = φ∗

i + αδφ, ωi = ωi + αimeas(T ).

3. For each vi ∈ V ,

φn+1
i = φn

i − ∆t(φ∗
i )

n/ωn
i .

In order to maintain φ(x, t) as a distance function, we re-initialize a given level set function

φ(x, t) so that it is a distance function for |φ| < ǫ without changing its zero level set. This

is achieved (see [36]) by solving the following problem to steady state

dτ = S(φ)(1 − |∇d|), τ > 0,

d(x, 0) = φ(x, t),
(3.3)

where S is the sign function and τ is an artificial time. It can be shown that the steady

state solution of (3.3) is a distance function. Furthermore, S(0) = 0 implies that d(x, τ)

has the same zero level set as φ(x, t). For numerical purposes it is useful to smooth the

sign function using

Sǫ(φ) =
φ

√

φ2 + ǫ2
.

Our discretization for approximating (3.3) is also based on the explicit positive coefficient

scheme [4], which is outlined in Table 2.

We use an improvement to the re-distance step as described in [37]. The idea is based

on the fact that the volume filled by each fluid must stay constant when the re-distance

step is applied. In order to minimize volume variation, we project the current values of

the level set function, denoted as d̃k
i , onto new values, denoted as dk

i , using

dk
i = d̃k

i + λiH
′
ǫ(d

0), (3.4)

where H ′
ǫ(φ) is the derivative for the smoothed Heaviside function Hǫ(φ) (3.2), and λi is

given by

λi =
−

∫

Ωi

H ′
ǫ(d

0)(d̃k − d0)dx
∫

Ωi

H ′
ǫ(d

0)2dx
. (3.5)
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Table 2: The algorithm of the explicit positive coefficient scheme for (3.3).

1. Initialize φ∗
i = ωi = 0, i = 1, · · · , |V |.

2. For each triangle T, i = 1, 2, 3,

Ni(x) ∈ P1, Ni(xj) = δij , j = 1, 2, 3, x ∈ T ,

F =
1

meas(T )

∫

T

Sǫ(φ)dx, ni = 2meas(T )∇Ni, ∇φ =
3

∑

j=1

∇Njφj,

Ki =
F∇φ · ni

2|∇φ|
, δφ =

3
∑

l=1

Klφl, δφi = K+
i

3
∑

l=1

K−
l (φi − φl)/

3
∑

l=1

K−
l ),

αi = max(0, δφi/δφ)/
3

∑

l=1

max(0, δφl/δφ),

φ∗
i = φ∗

i + α(δφ− Fmeas(T )), ωi = ωi + αimeas(T ).

3. For each vi ∈ V ,

φn+1
i = φn

i − ∆τ(φ∗
i )

n/ωn
i .

4 Moving mesh method

4.1 Fixed mesh solution

Let V ⊂ H1
0 (Ω)2 and P ⊂ L2

0(Ω) be two finite element spaces. We use a standard mixed

finite element approach to discretize the governing equation (2.4) together with the diver-

gence free constraint. More precisely, we need to find a pair (u, p) in the space V×P such

that

1

∆t
(ρnun+1, ψ) +

1

Re
[(2µnun+1

x , ψx) + (µnun+1
y + µnvn+1

x , ψy)] − (pn+1, ψx)

=
1

∆t
(ρnun, ψ) − (ρnun · ∇un, ψ) + (

1

We
κδφx, ψ) (4.1a)

1

∆t
(ρnvn+1, ψ) +

1

Re
[(µnun+1

y + µnvn+1
x , ψx) + (2µnvn+1

y , ψy)] − (pn+1, ψy)

=
1

∆t
(ρnvn, ψ) − (ρnun · ∇vn, ψ) + (

1

We
κδφy, ψ) − (

1

Fr
ρn, ψ) (4.1b)

(q, un+1
x + vn+1

y ) = 0, (4.1c)

for any ψ ∈ V and q ∈ P . In other words, we use a very typical finite element discretization

to solve the 2D incompressible Navier-Stokes equations.

4.2 Moving mesh strategy

Assume that at time t = tn+1 a finite element solution (un+1
h , pn+1

h ) and φn+1
h are obtained

using the methods described in Section 4.1 and Section 3, respectively. These solutions

are obtained in the old mesh, i.e., the mesh used at t = tn. Now the question is how to
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obtain a new mesh T n+1
h using (un+1

h , pn+1
h , φn+1

h ) and T n
h . Moreover, after obtaining the

new mesh, the finite element solutions at t = tn+1 available on T n
h need to be redistributed

on T n+1
h .

The outline of the mesh generation scheme is as follows.

• Step 1: minimization of a mesh functional. We redistribute interior domain and boundary

points by solving the following optimization problem:

min
∑

k

∫

Ω

Gij ∂ξ
k

∂xi

∂ξk

∂xj
d~x

s.t. ξ|∂Ω = ξb ∈ K

(4.2)

where the inverse of the matrix (Gij) is called monitor function which is in general depen-

dent on the solution (un+1
h , pn+1

h , φn+1
h ), K is a mapping set from the physical boundary ∂Ω

to the computational boundary ∂Ωc, where the mapping keeps the geometrical character

of the physical domain unchanged during the boundary grid redistribution. The minimiza-

tion procedure is well described in Li et al. [22].

• Step 2: grid redistribution. Denote the initial (fixed uniform) mesh in the logical domain

as Tc (with nodes A(0)), and the new logical mesh obtained by solving (4.2) as T ∗
c (with

nodes A∗). Their difference

δA = A(0) −A∗ (4.3)

is used to determine the displacement δXi in the physical domain. Then select a suitable

ratio-parameter µ, and move the old mesh in the physical domain to a new one by using

X
(n+1)
i = X

(n)
i + µδXi. (4.4)

Again, the details of this grid redistribution procedure can be found in Li et al. [22].

• Step 3: solution interpolation. After obtaining the new mesh Xn+1
i , the finite element

solutions (un+1
h , pn+1

h , φn+1
h ) at the mesh Xn

i need to be interpolated to the new mesh.

Here we follow a procedure proposed in [12] where a moving mesh strategy was proposed

to solve the incompressible Navier-Stokes equations. The basic idea is to maintain the

solution surface of uh on Ω unchanged. More precisely, the surface of the solution formed

at the mesh Xn
i with the solution (un+1

h , pn+1
h , φn+1

h ) will not be changed, though the nodes

of the mesh may be moved to new locations based on some re-distribution principles.

To this end, we consider a homotopy between uh(tn) (the solution defined on the finite

element space Vh(tn) at t = tn) and uh(tn+1) (the solution defined on the finite element

space Vh(tn+1) at t = tn+1), i.e., ∀vh(x; t) ∈ Vh(t)

(

∂uh

∂t
, vh(x; t)

)

=< Lh(uh), vh(x; t) >, (4.5)

where Lh is the corresponding spatial differential operator. By also adding the level set
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function, the desired solution interpolation can be realized by solving the system

ρ

(

∂u

∂τ
−∇~xu · δ~x

)

= −∇p, (4.6a)

∇~x · u = 0, (4.6b)

∂φ

∂τ
−∇~xφ · δ~x = 0. (4.6c)

We now give some necessary details for Step 1 above. We assume that ξ maps a linear

boundary segment on ∂Ω to a linear segment on ∂Ωc. Such assumption leads the constraint

in (4.2) to a linear system. More precisely, we define the energy for a map ξ = ξ(x) as

E (ξ) =
∑

k

∫

Ω

Gij ∂ξ
k

∂xi

∂ξk

∂xj
dx, (4.7)

It can be demonstrated that the extreme of the functional (4.7) is a harmonic mapping

in the interior of Ω. Moreover, solving problem (4.2) is equivalent to solving a linear

constrained optimization problem

min
ξ

E (ξ)

s.t. ξ (∂Ω) = ∂Ωc.
(4.8)

We will demonstrate that the above problem leads to a linear system. Use piecewise linear

discretion, ξk
h = ξk

i λ
i, where a standard summation convention is used. Let Ξk

inner and

Ξk
bound be the interior and boundary part of Ξk =

(

ξk
i

)

1≤i≤N
, respectively, and denote

H =
(

H ij
)

, H ij =

∫

Ω

Gαβ ∂λ
i

∂xα

∂λj

∂xβ
dx, 1 ≤ i, j ≤ N. (4.9)

We further split the matrices H into the following form:

H =

(

H11 H12

H21 H22

)

,

where the subscripts 1 and 2 denote the rows and columns corresponding to the interior

and boundary nodes, respectively. Assume that the constraint leads to a linear system of

the form
∑

k AkΞ
k = b, or equivalently

∑

k Ak,innerΞ
k
inner + Ak,boundΞ

k
bound = b.

With the above preparation, the optimization problem (4.2) is equivalent to

min
Ξ

∑

k

{

Ξk,THΞk
}

s.t.
∑

k AkΞ
k = b.

(4.10)

Observe that Ak,inner = 0. We then have

min
Ξ

∑

k

{

Ξk,T
innerH11Ξ

k
inner + 2Ξk,T

boundH21Ξ
k
inner + Ξk,T

boundH22Ξ
k
bound

}

s.t.
∑

k Ak,boundΞ
k
bound = b.

(4.11)
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The above approach also takes care of the boundary grid redistributions. In fact, the

interior and boundary grids are redistributed simultaneously at each time level. A more

detailed description of the above optimization procedure can be found in [22].

4.3 Monitor function

It is very important to choose an appropriate monitor function, otherwise the adaptive

effect can not be realized no matter how good a moving mesh algorithm is. For problems

with free interfaces, the singularity often occurs around the interface where more grid

points are required. Away from the interface, it is hoped that the grids are as uniform as

possible. Hence, it is essential that the monitor function should be inversely proportional

to the values of the level set function. It is also noted that the moving interface can

develop corners, cusps, and undergo topological changes. To cluster more points around

these places, some information on κ, the curvature of the level set function as defined in

(2.2), should be included. To this end, the following monitor function is proposed and

used:

G =
1 + β|κ|/max |κ|

1 + α |φ|/max |φ|
, (4.12)

where β and α are user-defined positive constants to determine the density of the mesh.

Roughly speaking, more points will be moved to areas with large curvature or/and small

level set values.

4.4 Numerical procedure

We describe the actual numerical discretization described in the previous sections. The

outline of our scheme is as follows.

Given the velocity un and the level set function φn at time tn. We are also given

the density ρn = ρ(φn), viscosity µn = µ(φn) and Heaviside function Hn = H(φn). We

discretize the problem using the following steps:

1. Level set update for φn+1:

φt + un · ∇φ = 0.

using the explicit positive coefficient scheme as described in Section 3. We advance

in time using third order TVD Runge-Kutta methods formula in [34].

2. Re-distance step for φn+1. We maintain the level set function φ as the signed

normal distance to the free surface. Details of the resistance step are presented in

Section 3.

3. Solve the Navier-Stokes equations to get un+1. This is done by using of the

mixed finite element methods as described in Section 4.1, by using the new level set

function φn+1.
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4. Mesh motion and solution interpolation. Compute the monitor function, move

mesh and update the velocity and the level set function on the new mesh, as described

in Section 4.2.

The last step above is in fact an iteration step, so it in general requires a few iterations

at each time step (see, e.g., [12, 22]). However, for the numerical computations in this

work, only one iteration is sufficient to obtain a satisfactory mesh at each time level except

at the initial stage where the number of iterations depends on the degree of singularity of

the initial data.

5 Numerical examples

In this section, we will apply our numerical method to several problems. The first one

is the gas bubble bursting at a free surface, the second one is the merging of two fluid

bubbles, and the last one is the impact of a water droplet on a pool. In the numerical

examples, we use the following constants unless otherwise specified: g = −9.8m/s2, σ =

0.0728kg/s2, ρwater = 1000kg/m3, µwater = 1.137 × 10−3kg/ms, ρair = 1.226kg/m3 and

µair = 1.78×10−5kg/ms. We consider flows in a unit square domain Ω and assume the flow

is periodic in the x-direction. The boundary conditions at y = 0 and y = 1 are assumed

to be no-slip and no-flow boundary conditions; i.e., u = 0, v = 0.

The purpose of our numerical experiments is to demonstrate that detailed inter-facial

structures during a topological transition can be captured accurately with small number of

grid points using our moving mesh method. For this reason, we have performed a series of

resolution studies. The numerical solutions we present here are mostly carried out using a

80×80 grid. When we compare these solutions with the uniform 250×250 grid calculations,

they are almost indistinguishable. Moreover, the parameters in the monitor function (4.12)

are not very sensitive so we just set them to β = 4 and α = 10 in all of our numerical

experiments.

5.1 Gas bubble bursting at a free surface

We consider the problem of a gas bubble rising to the free surface of a liquid. Above

the fluid, the air is same as that in the bubble. When a bubble bursts at a free surface,

the surface tension rapidly pulls the rim where they intersect outward and downward.

Eventually, a ring of fluid at the base of what was the bubble contracts to a point, throwing

a plume of fluid upward in the form of a high-speed jet. Various aspects of this motion

have been studied experimentally (see, e.g., [29]) and numerically (see, e.g., [6, 30, 13]).

Previous numerical studies have used boundary integral methods [6, 7], VOF-type method

[33], and the so-called marker-chain approach [13].

Fig. 1 illustrates the computational results of the jet formation in a 3mm bubble
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Figure 1: Time sequence of the jet formation in a 3mm bubble bursting at a free surface. Profiles

are 0.1 apart, from t = 0.1 to 1.0. A 802 moving grid is used.

Figure 2: Gas bubble bursting at a free surface: the mesh at t = 1.0 at a 802 moving grid.
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Figure 3: Merging of two bubbles in moving 80×80 mesh. The density ratio between the bubbles

and the background is 1 : 10, and µl = 0.0005, µg = 0.00025, σ = 0. t = 0.1, 0.3, 0.4, 0.5.
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Figure 4: Merging of two bubbles in moving 80×80 mesh. The density ratio between the bubbles

and the background is 1 : 10, and µl = 0.0005, µg = 0.00025, σ = 0. t = 0, 0.1, 0.2, 0.3 for the first

row, and t = 0.35, 0.4, 0.45 and 0.5 for the second row.
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Figure 5: (a): Close-up of the adaptive mesh (80 × 80) around the roll of two bubbles merging

at t = 0.55. (b): The boxed region in the left figure is magnified in the right figure.

bursting at a free surface obtained on a 802 grid. The parameters used in Eq. (2.4) are

Re = 6649, Fr = 1, and We = 44. It is found that the the moving mesh results obtained

with a 802 grid and a 2502 grid are graphically indistinguishable, indicating that the moving

mesh scheme with a 802 grid can resolve the gas bubble problems. To see the moving mesh
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effect, we plot in Fig. 2 the corresponding mesh at the final time, t = 1.0. It is seen that

more grid points are clustered around the interface where the level set function is zero.

5.2 Merging two bubbles with the same density

In this subsection, we compute the interaction of two fluid bubbles of the same density

under the influence of gravity. The fluid is set at rest initially. The viscosity for the fluid

inside and outside the two bubbles is equal to µ = 0.00025 and 0.0005, respectively. The

surface tension is set to be zero. The initial positions of the two bubbles correspond to

two circles, with the lower one centered at (0.5, 0.35) with radius 0.1 and the upper one

centered at (0.5, 0.65) with radius 0.15. We take the density inside and outside the two

bubbles to be 1 and 10, respectively.

In Fig. 3, we plot the numerical solutions together with the corresponding meshes at

t = 0.1, 0.3, 0.4 and 0.5, obtained by using a 802 grid. The desired effect of the mesh

adaptivity can be clearly seen in this figure. The time sequence of the merging of the two

bubbles is plotted in Fig. 4. In [10], the level set method together with a second-order

projection scheme was used to study the merging of two bubbles with the above parameters.

The overall agreement between our coarse mesh results and the fine mesh results of [10]

(where a 2562 uniform grid is employed) is very satisfactory.

Monitor functions. Fig. 5 shows a close-up of the dynamically adaptive mesh of the

two bubbles merging at t = 0.55. On the one hand the level set function used in the monitor

makes the adaptive mesh to follow closely the interface dynamics; on the other hand, the

curvature term helps to move the grid points to the regions with complex structures, i.e.,

very singular corners and cusps. As a result, the interface is effectively resolved even when

it becomes extremely localized and singular.

Time steps for moving mesh method. The time steps used for computing this prob-

lem are found interesting. In general, moving mesh approach has to use smaller time steps

compared with the uniform mesh approach when both approaches have the same smallest

mesh scale (the smallest circumradius of the triangles), see, e.g., [38, 40]. However, an

exception is observed in this example. In Fig. 6, the dotted line is the time step on a

2502 uniform grid and the solid line is the one on a 802 moving grid. The mesh scale of

both grids are all about 3.5 ∗ 10−3. However, it is observed from Fig. 6 that the time

step for the moving mesh is larger than that for the uniform mesh. The possible reason

for this is as follows. For the bubble merging problem, the time step is dominated by the

CFL condition for the convection term, so the time step is proportional to the value of

minj{∆xj/|u|j}, where ∆xj and uj are representative mesh size and velocity in the j-th

cell. In this problem, the area with the largest velocity is near the exterior interface of the

big bubble where the mesh size is relatively large, while the area with the smallest mesh

is in the interior interface where the velocity is not too large. Consequently, we end up

with larger ratio minj{∆xj/|u|j} for the moving mesh methods. Consequently, with the
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Figure 6: Time steps used for the bubble merging problems: dotted line is the time step on a

2502 uniform mesh and the solid line is on a 802 moving mesh; both meshes have same value of

the smallest mesh scale.

same mesh scale the time step used for the moving mesh methods is larger than that of

the uniform computation.

5.3 Water droplet impact

Liquid drop impact on liquid and solid surfaces has important engineering and biological

implications. Ink-jet printing and the dispersal of fungal spores are examples of two pro-

cesses which are governed by drop impact dynamics. We compute the impact of a water

droplet on a pool of water along with the “splash” that comes afterward. In our compu-

tations, we use dimensionless parameters based on the impact velocity U and the radius

of the drop R. In Fig. 7, we show results using R = 1mm and U = 4.0m/s. For that

we have Re = 28144, Fr = 204, and We = 1760. The dimensionless impact velocity is

1; we accelerate the drop with a fictitious gravitational force term 1/Fr = 4 for a total

dimensionless time 0.25. At dimensionless time t = 0.25, the drop will be traveling with

dimensionless speed of 1 and begin to merge into the pool.

The study of drop impact on liquid surfaces has a long history, see, [18, 17, 31] and

references therein. In [18, 17], Harlow and Shannon studied drop impact on a liquid layer

using the MAC method. Their calculations were very inspiring. Sussman et al. [37] studied

this problem using an adaptive level set method with projection method.
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Figure 7: Impact of water drop with an 1002 moving grid. The parameters used are Re = 28144, Fr =

204, We = 1760, ρg/ρl = 1/816, µg/µl = 1; t = 0.25, 0.3, 0.46, 0.67.
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Figure 8: The comparison for simulations of merging of two bubbles between moving 80 × 80

mesh with ǫ = 0.01 (solid line) and moving 160×160 mesh with ǫ = 0.005 (dashed line). The two

boxed regions in the left figure are magnified in the right two figures. The density ratio between

the bubbles and the background is 1 : 10, and µl = 0.0005, µg = 0.00025, σ = 0, t = 0.5.

In Fig. 7, we plot the evolution of the water drop at time t = 0.25, 0.3, 0.46, 0.67,

using a 1002 moving grid. To test the accuracy, the problem is also computed on an 2502

uniform grid. It is found that the finer mesh results are graphically indistinguishable with

the moving mesh results on the coarse grid.

6 Concluding remarks

In this work, the level set method and the moving mesh technique is combined to form

an efficient algorithm in solving the incompressible two-phase flow problems. To show

the combining approach works, two issues are considered. First, we demonstrate that the

moving mesh results on coarse grids are comparable with the uniform mesh results on

finer grids. Secondly, it is demonstrated that to obtain the same resolution the moving

mesh level set approach can save the internal memories and reduce the overall CPU time.

Moreover, the codes related to our moving mesh level set method are simpler than those

for the h-type adaptive level set approach developed in [37].

We close this work by discussing three issues related to the moving mesh level set
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Figure 9: Computational mesh from the simulation of droplet impact shown in Fig. 7 at time

t = 0.6. Each of the first three figures has a boxed region that is magnified in the next figure

(left to right, top to bottom).

computations performed in this work.

The size of the smoothing parameter. The first issue is about the size of the

smoothing parameter ǫ which is used to regularize the delta function. When a topological

change takes place in a free interface, it signals the formation of a singularity. In that

case, it is expected that the numerical smoothing parameter would have a strong effect

for the fine structure of the interface. Usually we relate this parameter and the grid size

parameter h by the relation ǫ = ch. For example, ǫ = 1.5h and ǫ = 2.5h are used in [36]

and [10], respectively. In [37], ǫ = 3h is used for the gas bubble problem and ǫ = 2h for the

water drop problem. In our computations, it was found that different inter-facial thickness
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ǫ produces similar qualitative results; but they may induce different detail information

during the topological transition. This is demonstrated in Fig. 8 where numerical results

for merging of two bubbles are plotted using a 802 base-grid and ǫ = 0.01 (solid line) and

a 1602 base-grid and ǫ = 0.005 (dashed line). The two boxed regions in the left figure are

magnified in the right two figures. Note that the fine structure of two interfaces are quite

different. However, the general structures produced by the two pair of parameters are very

similar. Since we are interested in capturing the fine scale structure of the physical solution

and the comparison among the results with different meshes, we fix a small enough value

of ǫ directly (just like in [9]).

Memory savings and speed-up. The second issue is about the real gaining of using

the moving mesh level set method. For the gas bubble problem considered in Section

5.1, by comparing the moving mesh computation on a 802 grid and the uniform mesh

computation on a 2502 grid (both yield comparable resolution) we found that the memory

savings for using the moving mesh method is 1:10 and the speed-up is about 4.3. For the

water droplet computations considered in Section 5.3, the memory savings for using the

moving mesh method is 1:6.5 and the speed-up is about 2.5. It is found that the speed-up

is less than half of the internal memory savings. This phenomena was also observed in

[37] where an adaptive projection method is used to solve the two-phase flow problems.

For computing the water drop problem (Section 5.3, [37]), it was found that the internal

memory savings for using an adaptive grid was 1:4 while the speed-up was only 1.7.

Mesh quality. Finally, we comment on the quality of the grid obtained with the com-

bined moving-mesh-level-set approach. In Fig. 9, computational mesh from the simulation

of droplet impact at t = 0.6 is replotted and magnified. It is clearly observed that the

meshes obtained by using our method are locally uniform and globally smooth.
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