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Abstract

We give an error estimate for the Energy and Helicity Preserving Scheme (EHPS)

in second order finite difference setting on axisymmetric incompressible flows with

swirling velocity. With careful and detailed truncation error analysis near the geometric

singularity and far field decay estimate for the stream function, we have achieved

optimal error bound using weighted energy estimate. A key ingredient in our a priori

estimate is the permutation identity associated with the Jacobians, which is also a

unique feature that distinguishes EHPS from standard finite difference schemes.

1 Introduction

Axisymmetric flow is an important subject in fluid dynamics and has become standard

textbook materials (e.g. [2]) as a starting point of theoretical study for complicated flow

patterns. Although the number of independent spatial variables is reduced by symmetry,

some of the essential feature and complexity of generic 3D flows remains. For example, when

the swirling velocity is nonzero, there is a vorticity stretching term present. This is widely

believed to account for possible singularity formation for Navier-Stokes and Euler flows. For

general smooth initial data, it is well known that the solution remains smooth for short time

in Euler [13] and Navier-Stokes flows [14]. A fundamental regularity result concerning the

solution of the Navier-Stokes equation is given in the pioneering work of Caffarelli, Kohn

and Nirenberg [4]: The one dimensional Hausdorff measure of the singular set is zero. As

a consequence, the only possible singularity for axisymmetric Navier-Stokes flows would be

on the axis of rotation. This result has motivated subsequent research activities concerning

the regularity of axisymmetric solutions of the Navier-Stokes equation. Some regularity and

partial regularity results for axisymmetric Euler and Navier-Stokes flows can be found in,

for example, [6] and the references therein. To date, the regularity of the Navier-Stokes

and Euler flows, whether axisymmetric or not, remains a challenging open problem. For

a comprehensive review on the regularity of the Navier-Stokes equation, see [15] and the

references therein.

Due to the subtle regularity issue, the numerical simulation of axisymmetric flows is

also a challenging subject for computational fluid dynamicists. The earliest attempt of
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numerical search for potential singularities of axisymmetric flows dates back to the 90’s

[9, 10]. In a recent work [17], the authors have developed a class of Energy and Helicity

Preserving Schemes (EHPS) for incompressible Navier-Stokes and MHD equations. There

the authors extended the vorticity-stream formulation of axisymmetric flows given in [9]

and proposed a generalized vorticity-stream formulation for 3D Navier-Stokes and MHD

flows with coordinate symmetry. In the case of axisymmetric flows, the main difference

between EHPS and the formulation in [9] is the expression and numerical discretization of

the nonlinear terms. It is shown in [17] that all the nonlinear terms in the Navier-Stokes and

MHD equation, including convection, vorticity stretching, geometric source, Lorentz force

and electro-motive force, can be written as Jacobians. Associated with the Jacobians is

a set of permutation identities which leads naturally to the conservation laws for first and

second moments. The main feature of the EHPS schemes is the numerical realization of these

conservation laws. In addition to preserving physically relevant quantities, the discrete form

of conservation laws provides numerical advantages as well. In particular, the conservation

of energy automatically enforces nonlinear stability of EHPS.

A potential difficulty associated with axisymmetric flows is the appearance of 1
r

factor

which becomes infinite at the axis of rotation, therefore sensitive to inconsistent or low order

numerical treatment near this ‘pole singularity’. In [17], the authors proposed a second order

finite difference scheme and handled the pole singularity by shifting the grids half grid length

away from the origin. Remarkably, the permutation identities and therefore the energy and

helicity identities remain valid in this case. There are alternative numerical treatments

proposed in literatures (e.g. [10]) to handle this coordinate singularity. However, rigorous

justifications for various pole conditions are yet to be established.

The purpose of this paper is to give a rigorous error estimate of EHPS for axisymmetric

flows. To focus on the pole singularity and avoid complication caused by physical boundary

conditions, we consider here only the whole space problem with the swirling components

of velocity and vorticity decaying fast enough at infinity. The error analysis of numerical

methods for NSE with nonslip physical boundary condition has been well studied. We refer

the works of Hou and Wetten [11], Liu and Wang [24] to interested readers. Our proof is

based on a weighted energy estimate together with a careful and detailed pointwise local

truncation error analysis. A major ingredient in our energy estimate is the permutation
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identities associated with the Jacobians (4.17). These identities are key to the energy and

helicity preserving property of EHPS for general symmetric flows. Here the same identities

enable us to obtain a priori estimate even in the presence of the pole singularity, see section 5

for details. To our knowledge, this is the first rigorous convergence proof for finite difference

schemes devised for axisymmetric flows.

In our pointwise local truncation error estimate, a fundamental issue is the identification

of smooth flows in the vicinity of the pole. Using a symmetry argument, we show that if the

swirling component is even in r (or more precisely, is the restriction of an even function on

r > 0), the vector field is in fact singular. See Example 1 in section 2 for details. This is an

easily overlooked mistake that even appeared in some research papers targeted at numerical

search of potential formation of finite time singularities. In addition to the regularity issue

at the axis of symmetry, a refined decay estimate for the stream function also plays an

important role in our analysis. In general, the stream function only decays as O((x2 + r2)−1)

at infinity. Accordingly, we have selected an appropriate combination of weight functions

that constitute an r-homogeneous norm. As a result, the slow decay of the stream function

is compensated by the fast decay of velocity and vorticity. Overall, we obtain a second order

(optimal) error estimate on axisymmetric flows.

The rest of this paper is organized as follows: In section 2, we introduce a proper notion

of smoothness for the swirling component of an axisymmetric divergence free vector field.

We show that the r-derivatives of even order must vanish on r = 0+. The same holds true for

vector fields in Sobolev spaces. In section 3, we show that the generalized vorticity-stream

formulation is equivalent to the original Navier-Stokes equation in primitive variable. There

is no extra regularity requirement upon switching to the vorticity formulation. In section 4,

we recall the energy and helicity preserving property for EHPS and use it to prove our main

theorem by energy estimate in section 5. The technical details of the pointwise estimate for

the local truncation error is given in the Appendix.
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2 Classical and Sobolev Spaces for Axisymmetric Solenoidal

Vector Fields

In this section, we establish basic regularity results for axisymmetric vector fields. We will

show that the swirling component of a smooth axisymmetric vector field has vanishing even

order derivatives in the radial direction at the axis of rotation. This is done in Lemma 1 by

a symmetry argument.

Throughout this paper, we will be using the cylindrical coordinate system

x = x, y = r cos θ, z = r sin θ. (2.1)

where the x-axis is the axis of rotation. A vector field u is said to be axisymmetric if

∂θux = ∂θur = ∂θuθ = 0. Here and throughout this paper, the subscripts of u are used to

denote components rather than partial derivatives.

The three basic differential operators in cylindrical coordinate system are given by

∇u = (∂xu)ex + (∂ru)er + (
1

r
∂θu)eθ (2.2)

∇ · u =
1

r
(∂x(rux) + ∂r(rur) + ∂θuθ) (2.3)

∇× u =
1

r

∣∣∣∣∣∣
ex er reθ

∂x ∂r ∂θ

ux ur ruθ

∣∣∣∣∣∣ (2.4)

Here ex, er and eθ are the unit vectors in the x, r and θ directions respectively.

Denote by Ck
s the axisymmetric divergence free subspace of Ck vector fields:

Definition 1 :

Ck
s = {u ∈ Ck(R3, R3), ∂θux = ∂θur = ∂θuθ = 0, ∇ · u = 0} (2.5)

We have the following representation and regularity result for Ck
s :

Lemma 1 (a) For any u ∈ Ck
s , there exists a unique (u, ψ) such that

u = ueθ +∇× (ψeθ) =
∂r(rψ)

r
ex − ∂xψer + ueθ, r > 0, (2.6)

with

u(x, r) ∈ Ck(R×R+), ∂2`
r u(x, 0

+) = 0 for 0 ≤ 2` ≤ k, (2.7)
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and

ψ(x, r) ∈ Ck+1(R×R+), ∂2`
r ψ(x, 0+) = 0 for 0 ≤ 2` ≤ k + 1. (2.8)

(b) If (u, ψ) satisfies (2.7), (2.8) and u is given by (2.6) for r > 0, then u ∈ Ck
s with a

removable singularity at r = 0.

Proof:

Part (a): Since u is axisymmetric, we can write u = ux(x, r)ex + ur(x, r)er + uθ(x, r)eθ

for r > 0. Note that

ez(x, y, z)|z=0 =

{
eθ(x, y, z)|z=0 if y > 0

−eθ(x, y, z)|z=0 if y < 0
(2.9)

Here ez is the unit vector in the z direction. With slight abuse of notation, we denote the

components of u in Cartesian and cylindrical coordinates by

ux(x, y, z) = ux(x, r)
uy(x, y, z) = ur(x, r) cos θ − uθ(x, r) sin θ
uz(x, y, z) = ur(x, r) sin θ + uθ(x, r) cos θ

(2.10)

where (r, θ) is given by (2.1). It follows that

uz(x, y, z)|z=0 =

{
uz(x, r, θ)r=y,θ=0 = uθ(x, |y|) if y > 0
−uz(x, r, θ)r=−y,θ=π = −uθ(x, |y|) if y < 0

(2.11)

therefore for y > 0,

uz(x, y, z)|z=0 = uθ(x, |y|) = uθ(x, | − y|) = −uz(x,−y, z)|z=0. (2.12)

Since uz ∈ Ck(R3) and uz(x, y, 0) is odd in y from (2.12), it follows that uθ has a Ck extension

up to r = 0

u(x, r) :=

{
uθ(x, r) if r > 0

0 if r = 0
= uz(x, y, 0)|y=r, r ≥ 0

and all the even r-derivatives vanish at r = 0+:

lim
r→0+

∂2`
r u(x, r) = lim

y→0+
∂2`

y uz(x, y, 0) = ∂2`
y uz(x, 0, 0) = 0, 0 ≤ 2` ≤ k

Hence (2.7) follows.

Next we derive the representation (2.6). Since u is divergence free, (2.3) gives

∂x(rux) + ∂r(rur) = 0,
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we know from standard argument that there exists a potential φ(x, r) such that

∂xφ = −rur, ∂rφ = rux (2.13)

Restricting (2.10) to θ = 0, or equivalently to z = 0, y > 0, we have

ux(x, r) = ux(x, y, z)|y=r,z=0, ur(x, r) = uy(x, y, z)|y=r,z=0, uθ(x, r) = uz(x, y, z)|y=r,z=0

(2.14)

From (2.13) and (2.14), it is clear that φ(x, r) ∈ Ck+1(R × R+). Since ∂xφ(x, 0+) = 0, we

may, without loss of generality, assume that φ(x, 0+) = 0. This also determines ψ uniquely.

Next we define

ψ(x, r) =
φ(x, r)

r
, r > 0. (2.15)

It is easy to see that ψ(x, r) ∈ Ck+1(R × R+), ψ(x, 0+) = ∂rφ(x, 0+) = 0 and (2.6) follows

for r > 0.

It remains to show that limr→0+ ∂j
rψ(x, r) is finite for 1 ≤ j ≤ k+1. To this end, we first

establish the following identity by induction:

Claim:

(j + 1)∂j
rψ(x, 0+) = j∂j−1

r ux(x, 0
+), 1 ≤ j ≤ k + 1. (2.16)

Proof of Claim: From (2.13) it follows that

∂j
r(rψ) = ∂j−1

r (rux), r > 0. (2.17)

When j = 1, (2.17) gives

∂rψ +
ψ

r
= ux

and we conclude from l’Hospital’s rule that

2∂rψ(x, 0+) = ux(x, 0
+),

thus (2.16) is verified for j = 1.

For j > 1, (2.17) gives

∂j
rψ − ∂j−1

r ux +

(
j∂j−1

r ψ − (j − 1)∂j−2
r ux

r

)
= 0. (2.18)
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Now suppose (2.16) is validated for j = `− 1,

`∂`−1
r ψ(x, 0+)− (`− 1)∂`−2

r ux(x, 0
+) = 0, (2.19)

from (2.18)-(2.19) and l’Hospital’s rule, we can easily derive

∂`
rψ(x, 0+)− ∂`−1

r ux(x, 0
+) = −

(
`∂`

rψ(x, 0+)− (`− 1)∂`−1
r ux(x, 0

+)
)

thus (2.16) is validated for j = ` and inductively for all 1 ≤ j ≤ k + 1. This completes the

proof of the claim. �

We conclude from (2.14) and (2.16) that ψ(x, r) ∈ Ck+1(R × R+). Moreover, following

the same argument outlined in (2.9-2.12), it is easy to show that ux(x, y, 0) is even in y.

Thus (2.8) follows from (2.16). This completes the proof of part (a).

Part (b): Conversely, we now show the regularity of u = ueθ +∇× (ψeθ) when (u, ψ)

satisfies (2.7) and (2.8). Since u is axisymmetric, it suffices to check the derivatives of u on

a cross section, say θ = 0, or z = 0, y ≥ 0.

It is clear from (2.6) and (2.14) that ux(x, y, 0), uy(x, y, 0) and uz(x, y, 0) have continuous

x derivatives up to order k on y ≥ 0. It remains to estimate the y-, z- and mixed derivatives.

From

∂y = cos θ∂r −
sin θ

r
∂θ (2.20)

∂z = sin θ∂r +
cos θ

r
∂θ (2.21)

we can derive the following

Proposition 1 (i)

∂j
yF (x, r, θ) = ∂j

rF (x, r, θ) + sin θ G(x, r, θ) (2.22)

where G consists of the derivatives of F .

(ii)

∂2m
z (f(x, r) cos θ) = y

m∑
`=0

a`,mz
2`

(
1

r
∂r

)`+m(
f

r

)
(2.23)

∂2m+1
z (f(x, r) cos θ) = y

m∑
`=0

b`,mz
2`+1

(
1

r
∂r

)`+m+1(
f

r

)
(2.24)
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∂2m
z (g(x, r) sin θ) =

m∑
`=0

c`,mz
2`+1

(
1

r
∂r

)`+m (g
r

)
(2.25)

∂2m−1
z (g(x, r) sin θ) =

m∑
`=0

d`,mz
2`

(
1

r
∂r

)`+m−1 (g
r

)
(2.26)

for some constants a`,m, b`,m, c`,m and d`,m.

Proof: From (2.20) and the following identity

(cos θ∂r−
sin θ

r
∂θ)(F +sin θG1) = (cos θ∂rF )+ sin θ(cos θ∂rG1−

1

r
∂θF −

sin θ

r
∂θG1), (2.27)

it is easy to derive (2.22). This proves part (i).

For part (ii), equations (2.23-2.26) result from substituting cos θ = y
r
, sin θ = z

r
followed

by straight forward calculations. We omit the details. �

Now we proceed to show that all the mixed derivatives of orders up to k are also continu-

ous on y ≥ 0. For simplicity of presentation, we consider mixed derivatives performed in the

following order ∂j
y∂

q
z∂

i
x. We start with ∂j

y∂
q
z∂

i
xux and analyze for q even and odd separately.

When q = 2m+ 1, we derive from (2.21) and (2.22) that

∂j
y∂

2m+1
z ∂i

xux(x, y, 0)

= ∂j
y∂

2m
z (sin θ ∂r∂

i
xux(x, r))|θ=0,r=y

= ∂j
y

(∑m
`=0 c`,mz

2`+1(1
r
∂r)

`+m(∂r∂i
xux(x,r)

r
)
)
|z=0,r=y

= 0

(2.28)

Next, when q = 2m, it follows from (2.21), (2.22), (2.26), (2.13) and (2.15) that

∂j
y∂

2m
z ∂i

xux(x, y, 0)

= ∂j
y∂

2m−1
z (sin θ ∂r∂

i
xux(x, r))|θ=0,r=y

= (∂j
r∂

2m−1
z (sin θ ∂r∂

i
xux) + sin θ G) |θ=0,r=y

= ∂j
r

∑m
`=0 d`,m(r sin θ)2`

(
1
r
∂r

)`+m−1
(∂r∂i

xux(x,r)
r

)|θ=0,r=y

= d0,m∂
j
r

(
1
r
∂r

)m
∂i

xux(x, r)|r=y

= d0,m∂
j
r

(
1
r
∂r

)m+1
(r∂i

xψ(x, r)) |r=y.

(2.29)
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From Lemma 1 and Taylor’s Theorem, we have

ψ(x, r) = a1(x)r + a3(x)r
3 + · · ·+ a2m−1(x)r

2m−1 +R2m+1(ψ),

where

an(x) =
1

n!
∂n

r ψ(x, 0+),

R2m+1(ψ) =

∫ r

0

∂2m+1
r ψ(x, s)

(r − s)2m

(2m)!
ds,

and

∂p
rR2m+1(ψ)(x, 0+) =

{
0, 0 ≤ p ≤ 2m

∂p
rψ(x, 0+), 2m+ 1 ≤ p ≤ 2m+ 1 + j

. (2.30)

It follows from direct calculation that

(
1

r
∂r)

m+1
(
r∂i

xψ(x, r)
)

= (
1

r
∂r)

m+1
(
r∂i

xR2m+1(ψ)
)

=
m+1∑
`=0

C`,m
∂`

r∂
i
xR2m+1(ψ)

r2m+1−`

and

∂j
r

(
1

r
∂r

)m+1

(r∂i
xψ(x, r)) =

m+1∑
`=0

C`,m∂
j
r

(
∂`

r∂
i
xR2m+1(ψ)

r2m+1−`

)
=

m+1∑
`=0

j∑
p=0

C`,mC
′
p,j

∂p+`
r ∂i

xR2m+1(ψ)

r2m+1−`+j−p

(2.31)

for some constants C`,m and C ′
p,j.

From (2.30), (2.31) and l’Hospital’s rule we conclude that

∂j
r

(
1

r
∂r

)m+1

(r∂i
xψ)(x, 0+) =

(
m+1∑
`=0

j∑
p=0

C`,mC
′
p,j

(2m− 1− `+ j − p)!

)
∂2m+1+j

r ∂i
xψ(x, 0+). (2.32)

Since ψ ∈ Ck+1(R × R+), it follows from (2.29), (2.32) and (2.28) that ∂j
y∂

q
z∂

i
xux(x, y, 0) is

continuous and bounded up to y = 0+ for j + q + i ≤ k.

Next we consider the mixed derivatives of uy and uz. In view of (2.10), it suffices to

calculate ∂j
y∂

q
z∂

i
x(f(x, r) cos θ + g(x, r) sin θ)|θ=0,r=y where f and g are either ±∂xψ or ±u.

When q = 2m, it follows from (2.23) and (2.25) that

∂j
y∂

2m
z ∂i

x(f(x, r) cos θ + g(x, r) sin θ)|θ=0,r=y

= ∂j
y∂

2m
z (∂i

xf(x, r) cos θ + ∂i
xg(x, r) sin θ)|θ=0,r=y

= a0,m∂
j
r

(
r(1

r
∂r)

m(∂i
xf
r

)
)
|r=y + c0,m∂

j
r

(
(1

r
∂r)

m(∂i
xg
r

)
)
|r=y
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From (2.7-2.8), both −∂xψ(x, r) and u(x, r) have local expansions of the form

b1(x)r + b3(x)r
3 + · · ·+ b2m−1(x)r

2m−1 +R2m+1.

Following the same argument above, we can show that both ∂j
y∂

2m
z ∂i

xuy and ∂j
y∂

2m
z ∂i

xuz are

continuous and bounded up to y = 0+ for j + 2m+ i ≤ k. The calculations for ∂j
y∂

2m+1
z ∂i

xuy

and ∂j
y∂

2m+1
z ∂i

xuz are similar. This completes the proof of Part (b). �

In view of Lemma 1, we now introduce the following function spaces:

Definition 2

Ck
s

(
R×R+

)
= {f(x, r) ∈ Ck

(
R×R+

)
, ∂2j

r f(x, 0+) = 0, 0 ≤ 2j ≤ k}

We can recast Lemma 1 as

Lemma 1’

Ck
s = {ueθ +∇× (ψeθ) |u ∈ Ck

s (R×R+), ψ ∈ Ck+1
s (R×R+)} (2.33)

In fact, we will show a counterpart for (2.33) in standard Sobolev spaces: A weak

solenoidal axisymmetric vector field admits the representation (2.6) with u(x, r) and ψ(x, r)

in certain weighted L2 and Hk spaces. Moreover, both u and ψ, together with certain even

order derivatives have vanishing traces on r = 0+.

We proceed with the following identity for general solenoidal vector fields:

Lemma 2 If u ∈ Ck(R3, R3) ∩Hk(R3, R3) and ∇ · u = 0, then

‖u‖2
Hk(R3,R3) =

k∑
`=0

‖(∇×)`u‖2
L2(R3,R3) (2.34)

Proof: We prove (2.34) for ` even and odd separately.

Since ∇ · u = 0, it follows that ∇×∇× u = −∇2u. Thus if ` is even, we can write

‖(∇×)2mu‖L2(R3,R3) = ‖(∇2)mu‖L2(R3,R3) (2.35)

When m = 1 and u ∈ Ck(R3), we can integrate by part to get∫
R3

|∇2u|2 =

∫
R3

(
3∑

i1=1

∂2
i1
u)2 =

∫
R3

3∑
i1,i2=1

∂2
i1
u∂2

i2
u =

∫
R3

3∑
i1,i2=1

(∂i1∂i2u)
2

11



Similarly, when m = 2,∫
R3

|(∇2)2u|2 =

∫
R3

(
(

3∑
i=1

∂2
i )

2u

)2

=

∫
R3

3∑
i1,i2,i3,i4=1

(∂2
i1
∂2

i2
u)(∂2

i3
∂2

i4
u)

=
3∑

i1,i2,i3,i4=1

∫
R3

(∂i1∂i2∂i3∂i4u)
2.

It is therefore easy to see that∫
R3

|(∇2)mu|2 =
3∑

i1,··· ,i2m=1

∫
R3

(∂i1 · · · ∂i2mu)
2

and consequently for u ∈ Ck(R3, R3), 2m ≤ k,

‖(∇2)mu‖2
L2(R3,R3) =

3∑
i1,··· ,i2m=1

‖(∂i1 · · · ∂i2m)u‖2
L2(R3,R3). (2.36)

On the other hand, if ` is odd, we first write

(∇×)2m+1u = ∇× (−(∇2))mu = (−1)m∇× (∇2)mu

then apply the identity

‖∇v‖2
L2(R3,R3) = ‖∇ × v‖2

L2(R3,R3) + ‖∇ · v‖2
L2(R3)

to get

‖(∇×)2m+1u‖L2(R3,R3) = ‖∇ × (∇2)mu‖L2(R3,R3) = ‖(∇2)m∇u‖L2(R3,R3) (2.37)

and from (2.36),

‖(∇2)m∇u‖2
L2(R3,R3) =

3∑
i,j=1

‖(∇2)m∂iuj‖2
L2(R3) =

3∑
i,j=1

3∑
i1,··· ,i2m=1

∫
R3

(∂i1 · · · ∂i2m∂iuj)
2

=
3∑

i1,··· ,i2m+1=1

‖(∂i1 · · · ∂i2m+1)u‖2
L2(R3,R3).

(2.38)

12



It follows from (2.35, (2.36), (2.37) and (2.38) that

‖u‖2
Hk(R3,R3) =

k∑
`=0

3∑
i1,··· ,i`=1

‖∂i1 · · · ∂i`u‖2
L2(R3,R3) =

k∑
`=0

‖(∇×)`u‖2
L2(R3,R3)

This completes the proof of Lemma 2. �

In Lemma 3 and Lemma 4 below, we will derive an equivalent representation of the

Sobolev norms for axisymmetric solenoidal vector fields.

Lemma 3 Let u ∈ Ck
s be represented by u = ueθ +∇ × (ψeθ) with u ∈ Ck

s

(
R×R+

)
and

ψ ∈ Ck+1
s

(
R×R+

)
. Then (∇×)`u ∈ Ck−`

s and

(∇×)2mu = (Lmu)eθ +∇× ((Lmψ)eθ), if 2m ≤ k,

(∇×)2m+1u = (Lm+1ψ)eθ +∇× ((Lmu)eθ), if 2m+ 1 ≤ k,

where

L := −∇2 +
1

r2
= −(∂2

r +
1

r
∂r + ∂2

x) +
1

r2
.

Moreover

Lmu ∈ Ck−2m
s (R×R+), if 2m ≤ k,

Lm+1ψ ∈ Ck−1−2m
s (R×R+), if 2m+ 1 ≤ k.

Proof: For any φ ∈ Ci
s

(
R×R+

)
, we have φ eθ ∈ Ci

s from Lemma 1 (b). With straight

forward calculation using (2.4), it is easy to verify that for i ≥ 2,

∇×∇× (φ eθ) = (Lφ)eθ. (2.39)

On the other hand, it is clear that

∇×∇× (φeθ) ∈ Ci−2
s ,

and therefore from Lemma 1 (a),

Lφ ∈ Ci−2
s

(
R×R+

)
. (2.40)

The Lemma then follows from (2.39) and (2.40). �
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Next we proceed to define the weighted Sobolev space for axisymmetric solenoidal vector

fields. For a, b ∈ C0
(
R×R+

)
, we define the weighted L2 inner product and norm

〈a, b〉 =

∫ ∞

−∞

∫ ∞

0

a(x, r)b(x, r) rdxdr, ‖a‖2
0 = 〈a, a〉, (2.41)

and for a, b ∈ C1
s

(
R×R+

)
, we define the weighted H1 inner product and norm

[a, b] = 〈∂xa, ∂xb〉+ 〈∂ra, ∂rb〉+ 〈a
r
,
b

r
〉 , ‖a‖2

1 = [a, a]. (2.42)

When a ∈ C1
s

(
R×R+

)
and b ∈ C1

s

(
R×R+

)
∩ C2 (R×R+), we also have the following

identity from integration by part:

〈a,Lb〉 = [a, b].

If u = ueθ +∇× (ψeθ), with u ∈ C0
(
R×R+

)
and ψ ∈ C1

s

(
R×R+

)
, it is easy to see

that

‖u‖2
L2(R3,R3) = ‖u‖2

0 + ‖ψ‖2
1 (2.43)

Higher order Sobolev norms can be defined similarly in terms of u and ψ:

Definition 3 For u = ueθ +∇× (ψeθ) ∈ Ck
s ,

‖u‖2
Hk

s
:= (‖u‖2

0 + ‖ψ‖2
1) + (‖Lψ‖2

0 + ‖u‖2
1) + (‖Lu‖2

0 + ‖Lψ‖2
1) + · · ·

=
∑

2m≤k

(‖Lmu‖2
0 + ‖Lmψ‖2

1) +
∑

2m+1≤k

(‖Lm+1ψ‖2
0 + ‖Lmu‖2

1)

In view of Lemma 1, Lemma 2, Lemma 3 and (2.43), we have proved the following

Lemma 4 If u ∈ Ck
s , then

‖u‖Hk(R3,R3) = ‖u‖Hk
s

Denote by Cc the space of compactly supported functions. We can now define the Sobolev

spaces for axisymmetric solenoidal vector fields following standard procedure:

Definition 4

L2
s(R×R+) := Completion of C0

s (R×R+) ∩ Cc(R×R+) with respect to ‖ · ‖0

H1
s (R×R+) := Completion of C1

s (R×R+) ∩ Cc(R×R+) with respect to ‖ · ‖1

Hk
s := Completion of Ck

s ∩ Cc(R
3, R3) with respect to ‖ · ‖Hk

s

14



Accordingly, we have the following characterization for Hk
s :

Lemma 5 If u ∈ Hk
s , then u admits a unique representation

u = ueθ +∇× (ψeθ) (2.44)

with u ∈ L2
s(R×R+) and ψ ∈ H1

s (R×R+). Moreover,

Lmu ∈ L2
s

(
R×R+

)
, Lmψ ∈ H1

s

(
R×R+

)
, if 2m ≤ k, (2.45)

Lm+1ψ ∈ L2
s

(
R×R+

)
, Lmu ∈ H1

s

(
R×R+

)
, if 2m+ 1 ≤ k, (2.46)

and

‖u‖Hk(R3,R3) = ‖u‖Hk
s
. (2.47)

Here the equality in (2.44) and the differential operators ∇×, Lm are realized in the sense

of distribution.

The proof of Lemma 5 is based on standard density argument. We omit the details.

Finally, the counterpart of (2.7) and (2.8) for u ∈ Hk
s is given by (2.45), (2.46) and the

following trace Lemma:

Lemma 6 If v ∈ H1
s

(
R×R+

)
, then the trace of v on r = 0 vanishes.

Proof: For any v ∈ C1
(
R×R+

)
∩ ∈ Cc

(
R×R+

)
, we have∫

R

|v(x, 0)|2 dx = −2

∫ ∫
R×R+

v∂rv dx dr ≤
∫ ∫

R×R+

(
v2

r2
+ (∂rv)

2

)
r dx dr ≤ ‖v‖2

1

Since v(x, 0) = 0 for v ∈ C1
s

(
R×R+

)
, the Lemma follows from standard density argument.

�

Example 1:

Take u = ueθ with u = e−x2
r2e−r. Note that u = O(r2) near the axis. Similar functions

can be found in literatures as initial data in numerical search for finite time singularities.

Although u ∈ C∞(R × R+) and u may appear to be a smooth vector field, it is easy to

verify that Lu(x, 0+) 6= 0. Thus from Lemma 1, Lemma 5 and Lemma 6, u is neither in

C2(R3, R3) nor in H3(R3, R3).
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3 Generalized Vorticity-Stream Formulation for Ax-

isymmetric Flows

3.1 Axisymmetric Formulation of Navier-Stokes Equations

In this section, we show that, under suitable regularity assumptions, any axisymmetric

solution of the Navier-Stokes equation

∂tu+ (∇× u)× u+∇p = −ν∇×∇× u

∇ · u = 0
(3.1)

is also a solution to the following axisymmetric formulation of Navier-Stokes solution derived

formally in [17]
ut + 1

r2J (ru, rψ) = ν(∇2 − 1
r2 )u ,

ωt + J
(

ω
r
, rψ
)

= ν(∇2 − 1
r2 )ω + J

(
u
r
, ru
)
,

ω = −(∇2 − 1
r2 )ψ ,

(3.2)

with u = ueθ +∇× (ψeθ) and vice versa.

The vorticity formulation for axisymmetric flows (3.2) has appeared in [9] with an alter-

native expression for the nonlinear terms. In [17], the authors have generalized the vorticity

formulation to general symmetric flows with the nonlinear terms recast in Jacobians as in

(3.2). Accompanied with the Jacobians is a set of permutation identities which played a key

role in the design of energy and helicity preserving scheme and in the convergence proof of

the scheme. We will explain the details in section 5.

The axisymmetric Navier-Stokes equation (3.2) can be formally derived from (3.1). A

smooth solution of (3.1) also gives rise to a smooth solution of (3.2). Moreover, from Lemma

1 (a), the resulted solution satisfies the pole condition (2.7,2.8) automatically. In other

words, if u ∈ C1(0, T ; Ck
s ) is a solution to (3.1), then the swirling components are in the class

ψ(t;x, r) ∈ C1
(
0, T ;Ck+1

s (R×R+)
)

u(t;x, r) ∈ C1
(
0, T ;Ck

s (R×R+)
)

ω(t;x, r) ∈ C1
(
0, T ;Ck−1

s (R×R+)
) (3.3)

However, it is not clear whether smooth solutions of (3.2) also give rise to smooth solutions

of (3.1).
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For example, in the case of Euler equation, an exact stationary solution to (3.2) with

ν = 0 is given by

u(t, x, r) = r2e−r, ω = ψ ≡ 0 (3.4)

It is clear that (3.4) is in C∞(R×R+), yet the corresponding u = ueθ is only in C1(R3, R3)

for any t.

In the case of Navier-Stokes equation (ν > 0), (3.2) is an elliptic-parabolic system on

a semi-bounded region (r > 0). From standard PDE theory, we need to assign boundary

values for (ψ, u, ω). The zeroth order part of the pole condition (2.7,2.8) would suffice:

ψ(x, 0) = u(x, 0) = ω(x, 0) = 0. (3.5)

It is therefore a natural question to ask if a smooth solution of (3.2, 3.5) in the class

ψ(t;x, r) ∈ C1
(
0, T ;Ck+1(R×R+)

)
u(t;x, r) ∈ C1

(
0, T ;Ck(R×R+)

)
ω(t;x, r) ∈ C1

(
0, T ;Ck−1(R×R+)

) (3.6)

will give rise to a smooth solution of (3.2). In other words, is the pole condition (2.7,2.8)

automatically satisfied if only the zeroth order part (3.5) is imposed?

The answer to this question is affirmative. We will show in Lemma 9 that (3.3) and

(3.6) are indeed equivalent for solutions of (3.2, 3.5). The proof is based on local Taylor

expansion. We decompose the proof into several Lemmas.

Lemma 7 If v ∈ C2j+2(R×R+) and ∂2`
r v(x, 0

+) = 0 for 0 ≤ ` ≤ j, then

lim
r→0+

∂2j+1
r (

v(x, r)

r
) = lim

r→0+

1

2j + 2
∂2j+2

r v(x, r)

Proof: Since v ∈ C2j+2(R×R+), we have

v(x, r) = a1(x)r + a3(x)r
3 + · · ·+ a2j+1(x)r

2j+1 +R2j+2(v) (3.7)

from Taylor’s Theorem. Here

an(x) =
1

n!
∂n

r v(x, 0
+),

R2j+2(v) =

∫ r

0

∂2j+2
r v(x, s)

(r − s)2j+1

(2j + 1)!
ds
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and

∂i
rR2j+2(v)(x, 0

+) = 0, 0 ≤ i ≤ 2j + 1, ∂2j+2
r R2j+2(v)(x, 0

+) = ∂2j+2
r v(x, 0+). (3.8)

From (3.7), it follows that

∂2j+1
r (

v(x, r)

r
) = ∂2j+1

r (
R2j+2(v)

r
) =

2j+1∑
i=0

Ci
2j+1(−1)ii!

∂2j+1−i
r R2j+2(v)

r1+i
(3.9)

From (3.8), (3.9) and l’Hospital’s rule, we can easily derive

lim
r→0+

∂2j+1
r (

v(x, r)

r
) =

(
2j+1∑
i=0

Ci
2j+1(−1)i 1

i+ 1

)
∂2j+2

r v(x, 0+) =
1

2j + 2
∂2j+2

r v(x, 0+).

This completes the proof of Lemma 7. �

Lemma 8 If 2j ≤ k − 2 and

ψ ∈ Ck+1(R×R+) ∩ C2j
s (R×R+)

u ∈ Ck(R×R+) ∩ C2j
s (R×R+)

ω ∈ Ck−1(R×R+) ∩ C2j
s (R×R+)

, (3.10)

then the Jacobians 1
r2J(ru, rψ), J(ω

r
, rψ) and J(u

r
, ru) are in C2j

s (R×R+).

Proof: From (3.10), it is obvious that 1
r2J(ru, rψ) ∈ Ck−1(R×R+), J(ω

r
, rψ) ∈ Ck−2(R×R+)

and J(u
r
, ru) ∈ Ck−1(R×R+). Therefore all three Jacobians are in C2j(R×R+). It remains

to evaluate the r-derivatives of the Jacobians at (x, 0+).

From (3.10), we have the following expansions:

ψ = a1(x)r + · · ·+ a2j−1(x)r
2j−1 +R2j+1(ψ)

u = b1(x)r + · · ·+ b2j−1(x)r
2j−1 +R2j+1(u)

ω = c1(x)r + · · ·+ c2j−1(x)r
2j−1 +R2j+1(ω)

where

(an(x), bn(x), cn(x)) =
1

n!
∂n

r (ψ, u, ω)(x, 0+)

and

R2j+1(v) =

∫ r

0

∂2j+1
r v(x, s)

(r − s)2j

(2j)!
ds.

Before we continue, we first introduce the following notations for brevity:
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Definition 5 For 0 ≤ q ≤ 2j + 1, we define

1. f(x, r) = Ô(rq) if f(x, r) = C(x)rq.

2. g(x, r) = Õ(rq) if g(x, r) ∈ C2j+1(R×R+) and

∂p
rg(x, 0

+) = 0, 0 ≤ p ≤ q − 1, |∂q
rg(x, 0

+)| <∞.

Using these notations, we can write

R2j+1(ψ, u, ω) = Õ(r2j+1)

and

(ψ, u, ω) = Ô(r) + Ô(r3) + · · ·+ Ô(r2j−1) + Õ(r2j+1). (3.11)

It is easy to verify directly that

∂p
r Õ(rq) = Õ(rq−p), p ≤ q ≤ 2j + 1,

and

Õ(rq)/rp = Õ(rq−p), p ≤ q ≤ 2j + 1.

From (3.11), we have

1

r
∂x(rψ),

1

r
∂x(ru) = Ô(r) + Ô(r3) + · · ·+ Ô(r2j−1) + ∂xÕ(r2j+1)

and
1

r
∂r(rψ),

1

r
∂r(ru) = Ô(1) + Ô(r2) + · · ·+ Ô(r2j−2) + Õ(r2j).

Therefore

1
r2J(rψ, ru) = Ô(r) + Ô(r3) + · · ·+ Ô(r2j−1)

+Õ(r2j)
(
Ô(r) + Ô(r3) + · · ·+ Ô(r2j−1)

)
+∂xÕ(r2j+1)

(
Ô(1) + Ô(r2) + · · ·+ Ô(r2j−2)

)
+Ô(r2j+3) + Ô(r2j+5) + · · ·+ Ô(r4j−3)

(3.12)

It is easy to see from (3.12) that

∂2i
r (

1

r2
J(ru, rψ))(x, 0+) = 0, 0 ≤ i ≤ j

and 1
r2J (ru, rψ) ∈ C2j

s (R × R+). The same argument applies to J
(

ω
r
, rψ
)

and J
(

u
r
, ru
)
.

This completes the proof of Lemma 8. �
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Lemma 9 If (ψ, u, ω) is a solution to (3.2, 3.5) in the class (3.6) with k ≥ 3. Then

ψ ∈ Ck+1
s (R×R+)

u ∈ Ck
s (R×R+)

ω ∈ Ck−1
s (R×R+)

(3.13)

for 0 ≤ t ≤ T .

Proof: Let j∗ be the largest integer such that 2j∗ ≤ k−1. We first show that on 0 ≤ t ≤ T ,

∂2`
r ψ(t, x, 0+) = 0
∂2`

r u(t, x, 0
+) = 0

∂2`
r ω(t, x, 0+) = 0.

(3.14)

for 0 ≤ ` ≤ j∗.

This is done by induction on `. When ` = 0, (3.14) is given by the boundary condition

(3.5). Suppose that (3.14) is verified for ` = j with j+1 ≤ j∗. We apply ∂2j−2
r |(x,0+) on both

sides of (3.2) and conclude that, in view of Lemma 8,

ν∂2j
r (∇2 − 1

r2 )u(x, 0
+) = 0,

ν∂2j
r (∇2 − 1

r2 )ω(x, 0+) = 0,
∂2j

r (∇2 − 1
r2 )ψ(x, 0+) = 0.

Since

(∇2 − 1

r2
)v = (∂2

xv + ∂2
rv + ∂r(

v

r
)),

and

∂2j
r (∇2 − 1

r2
)v = (∂2j+2

r v + ∂2j
r ∂

2
xv + ∂2j+1

r (
v

r
)),

it follows from Lemma 7 that ∂2j+2
r ψ(x, 0+) = ∂2j+2

r u(x, 0+) = ∂2j+2
r ω(x, 0+) = 0 thus (3.14)

is verified for ` = j + 1.

We can continue the induction until (3.14) is verified for ` = j∗ to get

ψ ∈ Ck+1(R×R+) ∩ C2j∗
s (R×R+)

u ∈ Ck(R×R+) ∩ C2j∗
s (R×R+)

ω ∈ Ck−1(R×R+) ∩ C2j∗
s (R×R+)

(3.15)

To complete the proof, we proceed with k odd and even separately.

If k is odd, say k = 2m+ 1, then j∗ = m and (3.15) can be written as

ψ ∈ C2m+2(R×R+) ∩ C2m
s (R×R+), u ∈ C2m+1

s (R×R+), ω ∈ C2m
s (R×R+). (3.16)

20



Since

∂2m
r (∇2 − 1

r2
)ψ = (∂2m+2

r ψ + ∂2m
r ∂2

xψ + ∂2m+1
r (

ψ

r
)) = ∂2m

r ω, (3.17)

we conclude from Lemma 7, (3.16) and (3.17) that ∂2m+2
r ψ(x, 0) = 0, therefore ψ ∈ C2m+2

s (R×
R+).

Similarly, if k = 2n, then j∗ = n− 1 and we have from (3.15)

ψ ∈ C2n+1(R×R+)∩C2n−2
s (R×R+), u ∈ C2n(R×R+)∩C2n−2

s (R×R+), ω ∈ C2n−1
s (R×R+).

Since 2n− 2 = k− 2, the assumption in Lemma 8 is satisfied. Therefore we can continue

the induction for u to get ∂2n
r u(x, 0+) = 0, thus u ∈ C2n

s (R×R+).

Finally,

∂2n−2
r (∇2 − 1

r2
)ψ = (∂2n

r ψ + ∂2n−2
r ∂2

xψ + ∂2n−1
r (

ψ

r
)) = ∂2n−2

r ω

and we conclude that ∂2n
r ψ(x, 0+) = 0 and ψ ∈ C2n+1(R×R+)∩C2n

s (R×R+) = C2n+1
s (R×

R+). This completes the proof of Lemma 9. �

The equivalence of (3.1) and (3.2) in terms of regularity of classical solutions is given by

Theorem 1 (I) Suppose (u, p) be an axisymmetric solution to NSE (3.1) with u ∈ C1
(
0, T ; Ck

s

)
,

p ∈ C0
(
0, T ;Ck−1(R3)

)
and k ≥ 3. Then there is a solution (ψ, u, ω) to (3.2) in the

class
ψ(t;x, r) ∈ C1

(
0, T ;Ck+1

s (R×R+)
)

u(t;x, r) ∈ C1
(
0, T ;Ck

s (R×R+)
)

ω(t;x, r) ∈ C1
(
0, T ;Ck−1

s (R×R+)
)

and u = ueθ +∇× (ψeθ).

(II) Let (ψ, u, ω) be a solution to (3.2,3.5) in the class

ψ(t;x, r) ∈ C1
(
0, T ;Ck+1(R×R+)

)
u(t;x, r) ∈ C1

(
0, T ;Ck(R×R+)

)
ω(t;x, r) ∈ C1

(
0, T ;Ck−1(R×R+)

)
with k ≥ 3. Then

u = ueθ +∇× (ψeθ) ∈ C1(0, T ; Ck
s )

and there is a axisymmetric scalar function p ∈ C0(0, T ;Ck−1(R3)) such that (u, p) is

a solution to NSE (3.1).
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Proof:

Part (I): Since u ∈ C1
(
0, T ; Ck

s

)
is a solution to (3.1) with k ≥ 3, it follows that

ω = ∇× u = ωeθ +∇× (ueθ) ∈ C1
(
0, T ; Ck−1

s

)
is also an axisymmetric solution to the Navier-Stokes equation in vorticity form:

∂tω +∇× (ω × u) = −ν∇×∇× ω (3.18)

Next, we express each term of (3.18) in the cylindrical coordinate as

∂tω = ∂tωeθ +∇× (∂tueθ), (3.19)

−∇×∇× ω =

(
(∇2 − 1

r2
)ω

)
eθ +∇×

(
(∇2 − 1

r2
)ueθ

)
, (3.20)

and

∇× (ω × u) =
(
J(
ω

r
, rψ)− J(

u

r
, ru)

)
eθ +∇×

(
1

r2
J (ru, rψ) eθ

)
. (3.21)

From (3.19-3.21), we can rewrite (3.18) as

aeθ +∇× (beθ) = 0, (3.22)

where

a = ωt + J
(ω
r
, rψ
)
− J

(u
r
, ru
)
− ν(∇2 − 1

r2
)ω,

and

b = ut +
1

r2
J (ru, rψ)− ν(∇2 − 1

r2
)u.

From (3.22), it follows that a(x, r) = 0 and rb(x, r) is a constant. Since b(x, 0+) = 0 from

Lemma 8 and Lemma 9, we conclude that b(x, r) ≡ 0 as well. This completes the proof of

part (I).

Part (II): From Lemma 9, we know that (ψ, u, ω) satisfies (3.13). Therefore Lemma 1

applies and we have

u = ueθ +∇× (ψeθ) ∈ C1(0, T ; Ck
s )

Next we define ω = ∇ × u. From (3.19-3.21), we see that ω satisfies the Navier-Stokes

equation in vorticity formulation (3.18). That is

∇× (∂tu+ ω × u+ ν∇× ω) = 0.
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Thus there exists a function p : (0, T ) → Ck−1(R3) such that

∂tu+ ω × u+ ν∇× ω = −∇p (3.23)

In other words, (u, p) satisfies the NSE (3.1). Since u ∈ C1(0, T ; Ck
s ), it follows from (3.23)

that ∇p ∈ C0(0, T ; Ck−2
s ). In addition, we can further assign p(t) on a reference point (x0, r0)

so that p ∈ C0(0, T ;Ck−1(R3)).

By construction, the left hand side of (3.23) is axisymmetric and therefore so is ∇p. In

particular

∂θ(∇p · eθ) = ∂θ

(
1

r
∂θp

)
= 0.

Therefore

p = a(x, r)θ + b(x, r)

Since p is continuous and single-valued, we conclude that a = 0. In other words, p is

axisymmetric. This completes the proof of theorem. �

3.2 Regularity Assumption on Solutions of NSE

The focus of this paper is the convergence rate of EHPS in the presence of the pole singularity.

To separate difficulties and avoid complications introduced by physical boundaries, we only

consider the whole space problem with exact solution decaying fast at infinity.

To be more specific, we consider the initial data u(x, 0) and ω(x, 0) to be smooth with

compact supports. Since (3.2) is a transport diffusion equation for u and ω with initially finite

speed of propagation, we expect u and ω to be essentially compactly supported, at least for

short time. For linear transport diffusion equations with initial data smooth and compactly

supported, the solution together with its derivatives will decay faster than polynomials at

infinity for t > 0. Some rigorous results concerning the spatial decay rate for the solutions of

axisymmetric flows can be found in [6] and the reference therein. In particular, it is shown

in [6] that both u and ω decay algebraically at infinity as long as this is the case initially.

Here we make a stronger, yet plausible assumption along this direction. The precise form

of our assumption is formulated in terms of weighted norms and is less stringent than the

analogy we draw from linear transport diffusion equations, see Assumption 1 below.

23



To quantify our assumption, we first introduce a family of r-homogeneous composite

norms and corresponding function spaces which turn out to be natural for our pointwise

energy estimate:

Definition 6

‖a‖`,α,β =
∑

`1+`2=`

‖ (1 + r)α(1 + |x|)β|∂`1
x ∂

`2
r (
u

r
)| ‖L∞(R×R+)

|||a|||k,α,β =
∑

0≤`≤k

‖a‖k−`,α−`,β

Ck,α,β
s = {a(x, r) ∈ Ck

s

(
R×R+

)
, |||a|||k,α,β <∞}

In section 5, we will show that EHPS is second order accurate provided the solution

satisfies {
(∂tψ, ψ, ω) ∈ C0

(
0, T ;C

4,α+ 7
2
,β

s ∩ C4,2α+2,2β
s

)
u ∈ C0

(
0, T ;C4,2α+2,2β

s ∩ C4,2α+2,2β
s ∩ C1,2,0

s

) , α >
1

2
, β >

1

4
. (3.24)

In view of (3.24), we formulate our regularity assumption as

Assumption 1

(∂tψ, ψ, ω) ∈ C0
(
0, T ;C4,γ,δ

s

)
, u ∈ C0

(
0, T ;C4,5,δ

s

)
, γ > 4, δ >

1

2
. (3.25)

Although we expect u, ω and their derivatives to decay faster than any polynomial at

infinity, the same expectation is not practical for ψ. As will be shown below, generically ψ

only decays like O((x2+r2)−1) at infinity. This is related to the decay rate of the fundamental

solution of Poisson equation in 3D and the vanishing zeroth moments of y, z components of

vorticity.

To see this, we start with the integral expression for ψ. From the vorticity-stream relation

∇×∇×ψ = ω

and the identification

ψ(x, r) = ψy(x, y, 0)|y=r, ω(x, r) = ωy(x, y, 0)|y=r,

we can derive the following integral formula for ψ [20]:

ψ(x, r) =

∫ ∞

0

∫ ∞

−∞
ω(x′, r′)K(x− x′, r, r′)dx′dr′ (3.26)
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where
K(x− x′, r, r′) = r′ 1

4π

∫ 2π

0
cos θ√

(x−x′)2+(r−r′ cos θ)2+(r′ cos θ)2
dθ

= r′2 2
π

∫ π
2

0
r cos2 θ

ρ+ρ−(ρ++ρ−)
dθ

(3.27)

and

ρ2
± = (x− x′)2 + (r ± r′ cos θ)2 + (r′ cos θ)2

As a consequence, we have the following far field estimate for K:

Lemma 10

|∂`
x∂

m
r K(x− x′, r, r′)| ≤ C`,m(x′, r′)

(√
x2 + r2

)−2−`−m

as x2 + r2 →∞

Proof: We will derive a far field estimate for the integrand in (3.27). We first consider a

typical term

lim
x2+r2→∞

|∂`
x∂

m
r ρ|

with

ρ2 = (x− x0)
2 + (r − r0)

2 + c20

where x0, r0 and c0 are some constants.

With the change of variables
r − r0 = σ cosλ
x− x0 = σ sinλ

we can rewrite the x and r derivatives by

∂rρ = ∂r

√
σ2 + c20 = (∂rσ)∂σ

√
σ2 + c20 + (∂rλ)∂λ

√
σ2 + c20 = cosλ · σ

ρ

∂xρ = ∂x

√
σ2 + c20 = (∂xσ)∂σ

√
σ2 + c20 + (∂xλ)∂λ

√
σ2 + c20 = sinλ · σ

ρ

Therefore by induction,

∂`
x∂

m
r ρ = P `,m(cosλ, sinλ)Q`,m(σ, ρ)

where P `,m(cosλ, sinλ) is a polynomial of degree ` + m in its arguments and Q`,m(σ, ρ) a

rational function of σ and ρ of degree 1− `−m. By degree of a rational function we mean

the degree of the numerator subtracting the degree of the denominator.

Since σ = O(
√
x2 + r2) and ρ = O(

√
x2 + r2), we conclude that

|∂`
x∂

m
r ρ| = O(

√
x2 + r2

1−`−m
).
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We can now apply the argument above and Leibniz’s rule to get

∂`
x∂

m
r

r

ρ+ρ−(ρ+ + ρ−)
=

J`,m∑
j

P̃ `,m
j (cosλ+, sinλ+, cosλ−, sinλ−)Q̃`,m

j (σ+, ρ+, σ−, ρ−, r)

where J`,m is a finite integer and σ± and ρ± are defined by

r ± r′ cos θ = σ± cosλ±
x− x0 = σ± sinλ±

and P̃ `,m
j , Q̃`,m

j are polynomials and rational functions of degrees `+m, −2− `−m in their

arguments respectively. The Lemma follows by integrating θ over (0, π
2
) in (3.27). �

We close this section by noting that ψ suffers from slow decay rate at infinity as a

consequence of (3.26) and Lemma 10. More precisely, ψ(x, r) ∼ O((x2 + r2)−1) in general.

This may seem to raise the question whether Assumption 1 is realizable at all. Indeed, a

more refined calculation using Lemma 10 shows that the range of γ and δ in (3.25) is not

void, provided ω decays fast enough at infinity:

Proposition 2 If γ + δ < k + 2 and ∂tω, ω ∈ Ck,γ′,δ′
s for sufficiently large γ′ and δ′, then

∂tψ, ψ ∈ Ck,γ,δ
s .

4 Energy and Helicity Preserving Scheme

In this section, we outline the derivation of the discrete energy and helicity identities for

EHPS. A key ingredient in the derivation is the reformulation of nonlinear terms into Jaco-

bians. The details can be found in [17].

We introduce the standard notation:

Dxφ(x, r) =
φ(x+ ∆x

2
, r)− φ(x− ∆x

2
, r)

∆x
, Drφ(x, r) =

φ(x, r + ∆r
2

)− φ(x, r − ∆r
2

)

∆r
,

D̃xφ(x, r) =
φ(x+ ∆x, r)− φ(x−∆x, r)

2∆x
, D̃rφ(x, r) =

φ(x, r + ∆r)− φ(x, r −∆r)

2∆r
.

and

∇̃h = (D̃x, D̃r), ∇̃⊥
h = (−D̃r, D̃x).

The finite difference approximation of ∇2 and the Jacobians are given by

∇2
hψ = Dx (Dxψ) +

1

r
(Dr(rDrψ))
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and

Jh(f, g) =
1

3

{
∇̃hf · ∇̃⊥

h g + ∇̃h · (f∇̃⊥
h g) + ∇̃⊥

h · (g∇̃hf)
}

(4.1)

Altogether, the finite difference version of EHPS is:

∂tuh + 1
r2Jh (ruh, rψh) = ν(∇2

h − 1
r2 )uh

∂tωh + Jh

(
ωh

r
, rψh

)
= ν(∇2

h − 1
r2 )ωh + Jh

(
uh

r
, ruh

)
ωh = (−∇2

h + 1
r2 )ψh

(4.2)

To derive the discrete energy and helicity identity, we first introduce the following discrete

analogue of weighted inner products

〈a, b〉h =
∞∑

i=−∞

∞∑
j=1

(rab)i,j ∆x∆r (4.3)

[a, b]h =

(
∞∑

i=−∞

∞∑
j=1

(r(Dxa)(Dxb))i− 1
2
,j +

∞∑
i=−∞

∞∑
j=1

′ (r(Dra)(Drb))i,j− 1
2

)
∆x∆r + 〈a

r
,
b

r
〉h

(4.4)

and the corresponding norms

‖a‖2
0,h = 〈a, a〉h, ‖a‖2

1,h = [a, a]h = ‖∇ha‖2
0,h + ‖a

r
‖2

0,h (4.5)

where ∞∑
j=1

′ =
1

2

∑
j=1

+
∞∑

j=2

(4.6)

and the grids have been shifted ([18]) to avoid placing the grid point on the axis of rotation:

xi = i∆x, i = 0,±1,±2, · · · , rj = (j − 1

2
)∆r, j = 1, 2, · · · (4.7)

The evaluation of D̃r and ∇2
h terms in (4.2) at j = 1 involves the dependent variables

uh, ψh, ωh and the stretching factor h3 = |∇θ|−1 = r at the ghost points j = 0. In view of

Lemma 1, we impose the following reflection boundary condition across the axis of rotation:

uh(i, 0) = −uh(i, 1), ψh(i, 0) = −ψh(i, 1), ωh(i, 0) = −ωh(i, 1). (4.8)

Furthermore, we take even extension for the coordinate stretching factor h3 = |∇θ|−1 = r

which appears in the evaluation of the Jacobians at j = 1:

h3(i, 0) = h3(i, 1). (4.9)
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We will show in the remaining sections that the extensions (4.8) and (4.9) indeed give rise

to a discrete version of energy and helicity identity and optimal local truncation error. As a

consequence, fully second order accuracy of EHPS is justified for axisymmetric flows.

Remark 1 At first glance, the extension (4.9) may seem to contradict (4.7) on the ghost

points j = 0. A less ambiguous restatement of (4.9) is to incorporate it into (4.2) as

∂tuh + 1
r2Jh (|r|uh, |r|ψh) = ν(∇2

h − 1
r2 )uh

∂tωh + Jh

(
ωh

|r| , |r|ψh

)
= ν(∇2

h − 1
r2 )ωh + Jh

(
uh

|r| , |r|uh

)
ωh = (−∇2

h + 1
r2 )ψh

on (xi, rj), j ≥ 1 (4.10)

The following identities are essential to the discrete energy and helicity identity and the

error estimate:

Lemma 11 Suppose (a, b, c) satisfies the reflection boundary condition

a(i, 0) = −a(i, 1), b(i, 0) = −b(i, 1), c(i, 0) = −c(i, 1)

and define

Th(a, b, c) :=
1

3

∞∑
i=−∞

∞∑
j=1

(
c∇̃ha · ∇̃⊥

h b+ a∇̃hb · ∇̃⊥
h c+ b∇̃hc · ∇̃⊥

h a
)

i,j
. (4.11)

Then ∞∑
i=−∞

∞∑
j=1

ci,jJh(a, b)i,j = Th(a, b, c), (4.12)

and

〈a, (−∇2
h +

1

r2
)b〉h = [a, b]h. (4.13)

Proof: We first derive (4.12). In view of (4.1) and (4.11), it suffices to show that∑
j

∑
i

c∇̃h · (a∇̃⊥
h b) = −

∑
i,j

a∇̃hc · ∇̃⊥
h b (4.14)

∑
i

∑
j

c∇̃⊥
h · (b∇̃ha) = −

∑
i,j

b∇̃⊥
h c · ∇̃ha (4.15)
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or, since there is no boundary terms in the x direction, simply

∞∑
i=−∞

∞∑
j=1

(fD̃rg)i,j = −
∞∑

i=−∞

∞∑
j=1

(gD̃rf)i,j (4.16)

with f = c and g = bD̃xa− aD̃xb.

It is straight forward to verify that

∞∑
i=−∞

∞∑
j=1

(fD̃rg)i,j = −
∞∑

i=−∞

∞∑
j=1

(gD̃rf)i,j −
∞∑

i=−∞

(fi,0g1,0 + gi,0fi,1).

In the derivation of the discrete energy and helicity identities (see (4.18-4.20) below), a

typical triplet (a, b, c) is given by, say, a = rψh, b = ruh and c = uh

r
. From the reflection

boundary condition (4.8) and (4.9), we have

fi,0 = −fi,1, gi,0 = gi,1.

This gives (4.16), and therefore (4.14), (4.15) and (4.12).

Next we derive (4.13). From the identity

∞∑
j=1

fj(gj+ 1
2
− gj− 1

2
) = −

∞∑
j=1

′(fj − fj−1)gj− 1
2
− 1

2
(f1 + f0)g 1

2

and r 1
2

= 0, it is easy show that

∞∑
i=−∞

∞∑
j=1

ai,jDr(rDrb)i,j = −
∞∑

i=−∞

∞∑
j=1

′(Dra)i,j− 1
2
rj− 1

2
(Drb)i,j− 1

2
.

Therefore (4.13) follows. �

From (4.11), we can easily derive the permutation identities

Th(a, b, c) = Th(b, c, a) = Th(c, a, b), Th(a, b, c) = −Th(b, a, c) . (4.17)

Moreover, from (4.12, 4.13), we can easily derive

〈υ, ∂tuh〉h + Th(ruh, rψh,
υ
r
) = ν〈υ, (∇2

h − 1
r2 )uh〉h

[ϕ, ∂tψh]h + Th(
ωh

r
, rψh, rϕ) = ν〈ϕ, (∇2

h − 1
r2 )ωh〉h + Th(

uh

r
, ruh, rϕ)

〈ξ, ωh〉h = [ξ, ψh]h

(4.18)
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for all υ, ϕ and ξ satisfying

υ(i, 0) = −υ(i, 1), ϕ(i, 0) = −ϕ(i, 1), ξ(i, 0) = −ξ(i, 1).

As a direct consequence of the permutation identity (4.17), we take (υ, ϕ) = (uh, ψh) in

(4.18) and recover the discrete energy identity

d

dt

1

2
(〈uh, uh〉h + [ψh, ψh]h) + ν([uh, uh]h + 〈ωh, ωh〉h) = 0 (4.19)

Similarly, the discrete helicity identity

d

dt
〈uh, ωh〉h + ν([uh, ωh]h − 〈ωh, (∇2

h −
1

r2
)uh〉h) = 0 (4.20)

follows by taking (υ, ϕ) = (ωh, uh) in (4.18).

Remark 2 In the presence of physical boundaries, the no-slip boundary condition gives

u · n = ∂τ (rψ) = 0, u · τ = ∂n(rψ) = 0, u · e3 = u = 0 (4.21)

where τ = n×e3 and e3 is the unit vector in θ direction. When the cross section Ω is simply

connected, (4.21) reads:

u = 0, ψ = 0, ∂n(rψ) = 0 on ∂Ω . (4.22)

It can be shown that the energy and helicity identities (4.19, 4.20) remains valid the presence

of physical boundary conditions [17]. The numerical realization of the no-slip condition (4.22)

introduced in [17] is second order accurate and seems to be new even for usual 2D flows. The

convergence proof for this new boundary condition will be reported elsewhere.

5 Energy Estimate and the Main Theorem

In this section, we proceed with the main Theorem of error estimate. We denote by ψh, uh,

ωh the numerical solution satisfying

∂tuh + 1
r2Jh(uh, rψh) = ν(∇2

h − 1
r2 )uh

∂tωh + Jh

(
ωh

r
, rψh

)
= ν(∇2

h − 1
r2 )ωh + Jh

(
uh

r
, ruh

)
ωh = (−∇2

h + 1
r2 )ψh

(5.1)
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and ψ, u, ω the exact solution to (3.2),

∂tu+ 1
r2Jh(ru, rψ) = ν(∇2

h − 1
r2 )u+ E1

∂tω + Jh

(
ω
r
, rψ
)

= ν(∇2
h − 1

r2 )ω + Jh

(
u
r
, ru
)

+ E2

ω = (−∇2
h + 1

r2 )ψ + E3

(5.2)

where the local truncation errors Ej can be derived by subtracting (3.2) from (5.2):

E1 = 1
r2 (Jh − J)(ru, rψ)− ν(∇2

h −∇2)u

E2 = (Jh − J)
(

ω
r
, rψ
)
− ν(∇2

h −∇2)ω − (Jh − J)
(

u
r
, ru
)

E3 = (∇2
h −∇2)ψ

(5.3)

From (5.1) and (5.2), we see that

∂t(u− uh) +
1

r2
(Jh(ru, rψ)− Jh(ruh, rψh)) = ν(∇2

h −
1

r2
)(u− uh) + E1 (5.4)

∂t(ω − ωh) +
(
Jh

(
ω
r
, rψ
)
− Jh

(
ωh

r
, rψh

))
= ν(∇2

h − 1
r2 )(ω − ωh) +

(
Jh

(
u
r
, ru
)
− Jh

(
uh

r
, ruh

))
+ E2

(5.5)

(ω − ωh) = (−∇2
h +

1

r2
)(ψ − ψh) + E3 (5.6)

For nonlinear problems, it is quite unusual that such an equality in conservative form can

be derived for finite difference schemes. In our case, the reflecting boundary condition (4.8)

and (4.9) play an important role in the derivation of the following equality:

Proposition 3

1
2
∂t(‖u− uh‖2

0,h + ‖ψ − ψh‖2
1,h) + ν(‖u− uh‖2

1,h + ‖ω − ωh‖2
0,h)

= 〈u− uh, E1〉h + 〈ψ − ψh, E2 − ∂tE3〉h − Th

(
u−uh

r
, r(u− uh), rψ

)
−Th

(
r(ψ − ψh),

(ω−ωh)
r

, rψ)
)

+ Th

(
r(ψ − ψh),

u
r
, r(u− uh)

) (5.7)

Proof:

We take the weighted inner product of u− uh with (5.4) to get

1
2
∂t‖u− uh‖2

0,h + 〈u− uh,
1
r2 (Jh(ru, rψ)− Jh(ruh, rψh))〉h

= ν〈u− uh, (∇2
h − 1

r2 )(u− uh)〉h + 〈u− uh, E1〉h .
(5.8)
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The second term on the left hand side of (5.8) can be rewritten as

〈u− uh,
1
r2 (Jh(ru, rψ)− Jh(ruh, rψh))〉h

= Th

(
u−uh

r
, ru, rψ

)
− Th

(
u−uh

r
, ruh, rψh

)
= −Th

(
u−uh

r
, r(u− uh), r(ψ − ψh)

)
+ Th

(
u−uh

r
, r(u− uh), rψ

)
+ Th

(
u−uh

r
, ru, r(ψ − ψh)

)
.

(5.9)

In addition, from (4.13)

ν〈u− uh, (∇2
h −

1

r2
)(u− uh)〉h = −ν[u− uh, u− uh]h = −ν‖u− uh‖2

1,h .

Thus

1
2
∂t‖u− uh‖2

0,h − Th

(
u−uh

r
, r(u− uh), r(ψ − ψh)

)
+ ν‖u− uh‖2

1,h

= 〈u− uh, E1〉h − Th

(
u−uh

r
, r(u− uh), rψ

)
− Th

(
u−uh

r
, ru, r(ψ − ψh)

)
.

(5.10)

Similarly, we take the weighted inner product of ψ − ψh with (5.5) and proceed as (5.9-

5.10) to get

1
2
∂t‖ψ − ψh‖2

1,h + Th

(
r(ψ − ψh),

(ω−ωh)
r

, rψ)
)

+ ν‖ω − ωh‖2
0,h

= −Th

(
r(ψ − ψh),

(u−uh)
r

, r(u− uh)
)

+ Th

(
r(ψ − ψh),

u
r
, r(u− uh)

)
+Th

(
r(ψ − ψh),

(u−uh)
r

, ru
)

+ 〈ψ − ψh, E2 − ∂tE3〉h .

(5.11)

Next, we apply (4.13) twice to get

ν〈(ψ − ψh), (∇2
h −

1

r2
)(ω − ωh)〉h = ν〈(∇2

h −
1

r2
)(ψ − ψh), ω − ωh〉h = −ν‖ω − ωh‖2

0,h

and (5.7) follows. This completes the proof of the Proposition. �

We proceed to the estimate of the right hand side of (5.7). We start with the following

elementary identities:

Proposition 4 Define

(Ãxf)i,j =
1

2
(fi+1,j + fi−1,j), (Ãrf)i,j =

1

2
(fi,j+1 + fi,j−1).

The following estimates hold for j ≥ 1:

|D̃r(ra)| ≤ C|Ãra|+ Cr|D̃ra| (5.12)
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|D̃r(
a

r
)| ≤ C

|Ãra|
r2

+ C
|D̃ra|
r

(5.13)

|Ãr(ra)| ≤ CrÃr|a| (5.14)

|∆rD̃ra| ≤ Ãr|a|, |∆xD̃xa| ≤ Ãx|a| (5.15)

Remark 3 As in Remark 1, the stretching factor r in the arguments of left hand side of

(5.12-5.14) satisfy the even extension (4.9). A more precise statement for, say, (5.12) is

given by

|D̃r(|r|a)|i,j ≤ C|Ãra|i,j + Crj|D̃ra|i,j, j ≥ 1.

For simplicity of presentation, we will adopt the expression as in (5.12-5.14) through rest of

the paper.

Proof of Proposition 4:

It is easy to verify that

D̃r(fg) = (Ãrf)(D̃rg) + (Ãrg)(D̃rf), D̃x(fg) = (Ãxf)(D̃xg) + (Ãxg)(D̃xf)

A straight forward calculation shows that

(Ãr|r|)j ≤ Crj, | D̃r|r| |j ≤ C

and

Ãr(
1

|r|
)j ≤ C

1

rj

, |D̃r(
1

|r|
)|j ≤ C

1

r2
j

for j ≥ 1. The estimates (5.12-5.14) then follows. The proof for (5.15) is also straight

forward. �

We now proceed to estimate the trilinear forms on the right hand side of (5.7)

Lemma 12 For a, b and c ∈ C1
s (R×R+), we have

|Th

(
ra, rb,

c

r

)
| ≤ C‖a‖1,h‖b‖1,h|||c|||1,2,0 (5.16)

and

|Th

(a
r
, rb, rc

)
| ≤ C‖a‖0,h‖b‖1,h|||c|||2,2,0. (5.17)
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Proof: We begin with the proof of (5.16). First we expand the left hand side as

Th

(
ra, rb, c

r

)
= 1

3

(
〈 c

r2 , ∇̃h(ra) · ∇̃⊥
h (rb)〉h + 〈a, ∇̃h(rb) · ∇̃⊥

h ( c
r
)〉h + 〈b, ∇̃h(

c
r
) · ∇̃⊥

h (ra)〉h
)

= 1
3
(I1 + I2 + I3)

and estimate the Ij’s term by term. We have

|I1| = |〈 c
r2
, ∇̃h(ra) · ∇̃⊥

h (rb)〉h| = |〈c, 1
r
D̃r(ra)D̃x(b)− D̃x(a)

1

r
D̃r(rb)〉h|,

therefore

|I1| ≤ C〈|c|, (|Ãr(a)

r
|+ |D̃r(a)|)|D̃x(b)|+ (|Ãr(b)

r
|+ |D̃r(b)|)|D̃x(a)|〉h ≤ C‖a‖1,h‖b‖1,h‖c‖0,1,0

follows from (5.12), Hölder inequality and the estimate |c| = |r c
r
| ≤ ‖c‖0,1,0.

Next,

|I2| ≤ C〈|a|, | Ãr(b)
r
|+ |D̃r(b)||D̃x(c)|〉h + C〈|a|, |D̃r(c)||D̃x(b)|〉h + C〈 |a|

r
, |Ar(c)||D̃x(b)|〉h

= C〈 |a|
r
, | Ãr(b)

r
|+ |D̃r(b)||rD̃x(c)|〉h + C〈 |a|

r
, |rD̃r(c)||D̃x(b)|〉h + C〈 |a|

r
, |Ar(c)||D̃x(b)|〉h

≤ C‖a‖1,h‖b‖1,h(‖c‖0,1,0 + ‖c‖1,2,0) ≤ C‖a‖1,h‖b‖1,h|||c|||1,2,0

The estimate for I3 is similar.

Next we proceed with (5.17). Since

|Th

(a
r
, rb, rc

)
| = |〈a, 1

r2
Jh(rb, rc)〉h| ≤ ‖a‖0,h‖

1

r2
Jh(rb, rc)‖0,h,

we first give a pointwise estimate of the integrand Jh(rb, rc):

3Jh(rb, rc) = D̃r(rb)D̃x(rc)− D̃x(rb)D̃r(rc) + D̃r

(
rbD̃x(rc)

)
− D̃x

(
rbD̃r(rc)

)
+D̃x

(
rcD̃r(rb)

)
− D̃r

(
rcD̃x(rb)

)
= D̃r(rb)(I + Ãr)D̃x(rc)− D̃x(rb)(I + Ãx)D̃r(rc) + (Ãr − Ãx)(rb)D̃rD̃x(rc)

+(Ãx − Ãr)(rc)D̃xD̃r(rb) + D̃x(rc)ÃxD̃r(rb)− D̃r(rc)ÃrD̃x(rb)

= D̃r(rb)(I + Ãr)D̃x(rc)− D̃x(rb)(I + Ãx)D̃r(rc) + (Ãr − Ãx)(rb)D̃rD̃x(rc)

+1
2
∆x2D̃rD̃x(rb)D

2
x(rc)− 1

2
∆r2D̃rD̃x(rb)D

2
r(rc)

+D̃x(rc)ÃxD̃r(rb)− D̃r(rc)ÃrD̃x(rb)
(5.18)
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Here I is the identity operator and we have used the identities

Ãx =
1

2
∆x2D2

x + I, Ãr =
1

2
∆r2D2

r + I

in the second equality of (5.18).

From (5.12), we have

|D̃r(rb)(I + Ãr)D̃x(rc)| ≤ Cr2(|D̃rb|+
|Ãrb|
r

)‖∂xc‖L∞ (5.19)

|D̃x(rb)(I + Ãx)D̃r(rc)| ≤ Cr2|D̃xb||∂rc|+
|c|
r
‖L∞ ≤ Cr2|D̃xb|(‖c‖0,0,0 + ‖c‖1,1,0) (5.20)

From (5.14) and (5.15), we can similarly derive the remaining terms in (5.18):

|(Ãr−Ãx)(rb)D̃rD̃x(rc)| ≤ Cr2 (Ãr + Ãx)|b|
r

‖∂x∂r(rc)‖L∞ ≤ Cr2 (Ãr + Ãx)|b|
r

(‖c‖1,1,0+‖c‖2,2,0),

(5.21)

|1
2
∆x2D̃rD̃x(rb)D

2
x(rc)| ≤ C

(∆x)2

∆r
|Ãr(rD̃x(b))D

2
x(rc)| ≤ Cr2 ∆r

r
Ãr|D̃xb|‖c‖2,2,0 (5.22)

|1
2
∆r2D̃rD̃x(rb)D

2
r(rc)| ≤ C∆r|ÃrD̃x(rb)|‖∂2

r (rc)‖L∞ ≤ Cr2 ∆r

r
Ãr|D̃xb||||c|||2,2,0 (5.23)

|ÃxD̃r(rb)D̃x(rc)| ≤ Cr2|Ãx(
1

r
D̃r(rb))|‖∂xc‖L∞ ≤ Cr2Ãx|D̃rb|‖c‖1,1,0 (5.24)

and

|ÃrD̃x(rb)D̃r(rc)| ≤ Cr2Ãr|D̃xb|‖∂rc‖L∞ ≤ Cr2Ãr|D̃xb||||c|||1,1,0 (5.25)

From (5.19-5.25), we can estimate the weighted L2 norm of 1
r2Jh(rb, rc) by

‖ 1

r2
Jh(rb, rc)‖0,h ≤ C‖(|D̃xb|+ |D̃rb|+

|b|
r

)‖0,h|||c|||2,2,0 ≤ C‖b‖1,h|||c|||2,2,0

and (5.17) follows. �

From Proposition 3, we can derive

1
2
∂t(‖u− uh‖2

0,h + ‖ψ − ψh‖2
1,h) + ν(‖u− uh‖2

1,h + ‖ω − ωh‖2
0,h)

≤ |〈u− uh, E1〉h|+ |〈ψ − ψh, E2 − ∂tE3〉h|+ C‖u− uh‖0,h‖u− uh‖1,h|||ψ|||2,2,0

+C‖ω − ωh‖0,h‖ψ − ψh‖1,h|||ψ|||2,2,0 + C‖ψ − ψh‖1,h‖u− uh‖1,h|||u|||1,2,0.

(5.26)

Since

‖a
r
‖0,h ≤ ‖a‖1,h,
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we can further estimate the first two terms on the right hand side of (5.26) by

|〈u− uh, E1〉h| = |〈u− uh

r
, rE1〉h| ≤

ν

4
‖u− uh‖2

1,h +
1

ν
‖rE1‖2

0,h

and

|〈ψ − ψh, E2 − ∂tE3〉h| ≤ ‖ψ − ψh‖2
1,h + ‖r(E2 − ∂tE3)‖2

0,h

We now conclude from Hölder’s inequality to get

1
2
∂t(‖u− uh‖2

0,h + ‖ψ − ψh‖2
1,h) + ν

4
(‖u− uh‖2

1,h + ‖ω − ωh‖2
0,h)

≤ ‖ψ − ψh‖2
1,h + C

ν
‖rE1‖2

0,h + ‖rE2‖2
0,h + ‖r∂tE3‖2

0,h + C
ν
‖u− uh‖2

0,h|||ψ|||22,2,0

+C
ν
‖ψ − ψh‖2

1,h|||ψ|||22,2,0 + C
ν
‖ψ − ψh‖2

1,h|||u|||21,2,0

(5.27)

With (5.27), it remains to estimate the local truncation errors ‖rE1‖0,h, ‖rE2‖0,h and

‖r∂tE3‖0,h. We summarize the results in Lemma 13 below. The proof will be given in the

Appendix.

Lemma 13 Let (ψ, u, ω) be a solution of the axisymmetric Navier Stokes equation (3.2) with

(∂tψ, ψ, u, ω) ∈ C0(0, T ;C4
s )

and E1, E2, E3 defined by (5.2). Then we have the following pointwise local truncation error

estimate for α, β ∈ R:

r|E1| ≤ C
∆x2 + ∆r2

(1 + r)2α(1 + |x|)2β

(
|||ψ|||4,α+ 7

2
,β|||u|||4,α+ 7

2
,β + |||u|||4,2α+2,2β

)
(5.28)

r|E2| ≤ C
∆x2 + ∆r2

(1 + r)2α(1 + |x|)2β

(
|||ψ|||4,α+ 7

2
,β|||ω|||4,α+ 7

2
,β + |||u|||2

4,α+ 7
2
,β

+ |||ω|||4,2α+2,2β

)
(5.29)

and

r|∂tE3| ≤ C
∆x2 + ∆r2

(1 + r)2α(1 + |x|)2β
|||∂tψ|||4,2α+2,2β (5.30)

Finally, we have the error estimate:

Theorem 2 Let (ψ, u, ω) be a solution of the axisymmetric Navier Stokes equation (3.2)

satisfying

(∂tψ, ψ, ω) ∈ C0
(
0, T ;C4,γ,δ

s

)
, u ∈ C0

(
0, T ;C4,5,δ

s

)
, γ > 4, δ >

1

2
. (5.31)
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Then

sup
[0,T ]

(
‖u− uh‖2

0,h + ‖ψ − ψh‖2
1,h

)
+

∫ T

0

(‖u−uh‖2
1,h +‖ω−ωh‖2

0,h)dt ≤ C(∆x2 +∆r2)2 (5.32)

where C = C(ψ, u, ν, T ).

Proof: From Lemma 13, we have

‖rE1‖2
0,h + ‖rE2‖2

0,h + ‖r∂tE3‖2
0,h

≤ C(∆x4 + ∆r4)

(
∞∑

i=−∞

∞∑
j=1

rj∆r∆x

(1 + rj)4α(1 + |xi|)4β

)(
|||(ψ, u, ω)|||4

4,α+ 7
2
,β

+ |||(u, ω, ∂tψ)|||24,2α+2,2β

)
.

Since
∞∑

i=−∞

∞∑
j=1

rj∆r∆x

(1 + rj)4α(1 + |xi|)4β
is convergent if α > 1

2
, β > 1

4
, it follows that

‖rE1‖2
0,h +‖rE2‖2

0,h +‖r∂tE3‖2
0,h ≤ C(∆x4 +∆r4)

(
|||(ψ, u, ω)|||44,γ,δ + |||(u, ω, ∂tψ)|||24,γ,δ

)
(5.33)

provided γ > 4, δ > 1
2
.

We conclude that, under assumption (5.31), we have ψ ∈ C2,2,0
s , u ∈ C1,2,0

s and

1
2
∂t(‖u− uh‖2

0,h + ‖ψ − ψh‖2
1,h) + ν

4
(‖u− uh‖2

1,h + ‖ω − ωh‖2
0,h)

≤ C‖u− uh‖2
0,h + C‖ψ − ψh‖2

1,h + C(∆x4 + ∆r4)

follows from (5.27) and (5.33). The error estimate (5.32) then follows from Gronwall’s

inequality. �

6 Appendix: Local Truncation Error Analysis – Proof

of Lemma 13

In this section, we proceed with the local truncation error estimate. All the assertions in

Lemmas 14-17 are pointwise estimates on the grid points (xi, rj), j ≥ 1. For brevity, we

omit the indices (i, j) whenever it is obvious.

We start with the estimates of the diffusion terms in (5.3).

Lemma 14 If a ∈ C4
s (R×R+) and α, β ∈ R, we have

r|(∇2
h −∇2)a| ≤

(
∆x2 + ∆r2

) 1

(1 + r)α(1 + |x|)β
|||a|||4,α+2,β
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Proof:

Since a ∈ C4
s (R×R+), the odd extension of a given by

ã(x, r) =

{
a(x, r), if r ≥ 0

−a(x,−r), if r < 0

is in C4(R2). It follows that

∇2
ha =

(
D2

x +D2
r +

D̃r

r

)
a = ∇2a+

1

12
∆x2∂4

xa|(ξ,r) + ∆r2

(
1

12
∂4

ra|(x,η1) +
1

6

1

r
(∂3

ra)(x,η2)

)
is valid for all j ≥ 1 with ξ ∈ (x−∆x, x+ ∆x) and η1, η2 ∈ (r −∆r, r + ∆r).

Thus

r|(∇2
h −∇2)a|

≤ C (∆x2 + ∆r2)
(
r|∂4

x(r
a
r
)|(ξ,r)|+ r|∂4

r (r
a
r
)|(x,η1)|+ |∂3

r (r
a
r
)|(x,η2)|

)
≤ C (∆x2 + ∆r2)

(
r(‖a‖4,α+2,β+‖a‖3,α+1,β)

(1+r)α+1(1+|ξ|)β +
r(‖a‖4,α+2,β+‖a‖3,α+1,β)

(1+η1)α+1(1+|x|)β +
‖a‖3,α+1,β+‖a‖2,α,β

(1+η2)α(1+|x|)β

)
≤ C (∆x2 + ∆r2) 1

(1+r)α(1+|x|)β |||a|||4,α+2,β

�

Next we proceed with the estimates for the Jacobians, starting with their typical factors:

Lemma 15 For a ∈ C4
s (R×R+), α, β ∈ R, we have

D̃x(
a

r
) = ∂x(

a

r
) +O(1)∆x2 1

(1 + r)α(1 + |x|)β
|||a|||3,α,β (6.1)

D̃x(ra) = ∂x(ra) +O(1)r2∆x2 1

(1 + r)α(1 + |x|)β
|||a|||3,α,β (6.2)

D̃r(
a

r
) = ∂r(

a

r
) +O(1)

∆r2

r3

1

(1 + r)α(1 + |x|)β
|||a|||3,α+3,β (6.3)

D̃r(ra) = ∂r(ra) +O(1)
∆r2

r

1

(1 + r)α(1 + |x|)β
|||a|||3,α+3,β (6.4)

Proof:

We begin with (6.1) and (6.2).

Since

(D̃x − ∂x)f =
∆x2

6
∂3

xf|(ξ,r), ξ ∈ (x−∆x, x+ ∆x),
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it follows that∣∣∣(D̃x − ∂x)(
a

r
)
∣∣∣ =

∆x2

6

∣∣∣∂3
x(
a

r
)
∣∣∣
|(ξ,r)

≤ C∆x2 1

(1 + r)α(1 + |x|)β
‖a‖3,α,β

and

|(D̃x − ∂x)(ra)| =
∆x2

6

∣∣∣∂3
x(r

2a

r
)|(ξ,r)

∣∣∣ ≤ Cr2∆x2 1

(1 + r)α(1 + |x|)β
‖a‖3,α,β

For (6.3) and (6.4), the estimate is a little more complicated due to our reflection bound-

ary condition (4.8) and (4.9). We estimate for j > 1 and j = 1 separately.

When j > 1, we have

(D̃r − ∂r)f =
1

6
∆r2∂3

rf |(x,η), η ∈ (r −∆r, r + ∆r).

Therefore we have∣∣∣(D̃r − ∂r)(
a

r
)
∣∣∣ =

∆r2

6

∣∣∣∂3
r (
a

r
)
∣∣∣
(x,η)

≤ C
∆r2

r3

1

(1 + r)α(1 + |x|)β
‖a‖3,α+3,β

and
|(D̃r − ∂r)(ra)| ≤ C∆r2

∣∣∂3
r (r

2 a
r
)
∣∣
(x,η)

≤ C∆r2

r
1

(1+r)α(1+|x|)β (‖a‖3,α+3,β + ‖a‖2,α+2,β + ‖a‖1,α+1,β)

When j = 1, we have∣∣∣∂r(
a

r
)
∣∣∣
j=1

= C
∆r2

r3
1

r1

∣∣∣∂r(
a

r
)
∣∣∣
j=1

≤ C
∆r2

r3
1

1

(1 + r1)α(1 + |x|)β
‖a‖1,α+1,β

In addition, since r1 = ∆r
2

, we apply (4.9) to get∣∣∣D̃r(
a

r
)
∣∣∣
j=1

=

∣∣∣∣ a2

r2
+ a1

r1

2∆r

∣∣∣∣ =

∣∣∣∣C∆r2

r3
1

(
a2

r2
+
a1

r1

)∣∣∣∣ ≤ C
∆r2

r3
1

1

(1 + r1)α(1 + |x|)β
‖a‖0,α,β

and (6.3) follows.

(6.4) can be proved similarly,

D̃r(ra)j=1 =
3
2
∆ra2 + 1

2
∆ra1

2∆r
=

3

4
a2 +

1

4
a1,

|a1| ≤ C
∆r2

r1

∣∣∣∣a1

r1

∣∣∣∣ ≤ C
∆r2

r1

1

(1 + r1)α(1 + |x|)β
‖a‖0,α,β,

and

|a2| ≤ C
∆r2

r1

∣∣∣∣a2

r2

∣∣∣∣ ≤ C
∆r2

r1

1

(1 + r1)α(1 + |x|)β
‖a‖0,α,β.
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Therefore ∣∣∣D̃r(ra)
∣∣∣
j=1

≤ C
∆r2

r1

1

(1 + r1)α(1 + |x|)β
‖a‖0,α,β

In addition,

|∂r(ra)|j=1 ≤
(
r2
∣∣∣∂r(

a

r
)
∣∣∣+ 2r

∣∣∣a
r

∣∣∣)
j=1

≤ C
∆r2

r1

1

(1 + r1)α(1 + |x|)β
(‖a‖1,α+1,β + ‖a‖0,α,β),

and (6.4) follows. �

We now continue with the pointwise estimates for the Jacobi terms 1
r
|Jh(ra, rb)−J(ra, rb)|

and r|Jh

(
a
r
, rb
)
− J

(
a
r
, rb
)
|. Since

3
r2Jh(ra, rb) = D̃x(

a
r
)D̃r(rb)− D̃r(ra)D̃x(

b
r
) + D̃x

(
a
r
D̃r(rb)− b

r
D̃r(ra)

)
+ 1

r2 D̃r

(
r2bD̃xa− r2aD̃xb

)
,

(6.5)

3Jh

(
a
r
, rb
)

= D̃x(
a
r
)D̃r(rb)− D̃r(

a
r
)D̃x(rb) + D̃x

(
a
r
D̃r(rb)− rbD̃r(

a
r
)
)

+D̃r

(
bD̃xa− aD̃xb

)
,

(6.6)

it suffices to estimate the terms in (6.5) and (6.6) individually. We summarize them as the

following

Lemma 16 If a, b ∈ C4
s (R×R+) and α1, α2, β1, β2 ∈ R, then

r|D̃r(
a
r
)D̃x(rb)− ∂r(

a
r
)∂x(rb)|+ 1

r
|D̃r(rb)D̃x(ra)− ∂r(rb)∂x(ra)|

≤ C(∆x2 + ∆r2) 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||3,α1+ 5
2
,β1
|||b|||3,α2+ 5

2
,β2

(6.7)

r|D̃x(
a
r
D̃r(rb))− ∂x(

a
r
∂r(rb))|+ r|D̃x(raD̃r(

b
r
))− ∂x(ra∂r(

b
r
))|

≤ C(∆x2 + ∆r2) 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||3,α1+ 5
2
,β1
|||b|||4,α2+ 7

2
,β2

(6.8)

r|D̃r(aD̃xb)− ∂r(a∂xb)|+ 1
r
|D̃r(r

2aD̃xb)− ∂r(r
2a∂xb)|

≤ C(∆x2 + ∆r2) 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||3,α1+ 5
2
,β1
|||b|||4,α2+ 7

2
,β2

(6.9)

Proof:

Since (6.2-6.3) are valid for any α, β ∈ R, we have

D̃x(
a

r
) = ∂x(

a

r
) +O(1)∆x2 1

(1 + r)α1+λ(1 + |x|)β1
|||a|||3,α1+λ,β1 (6.10)

D̃x(ra) = ∂x(ra) +O(1)r2∆x2 1

(1 + r)α1+λ(1 + |x|)β1
|||a|||3,α1+λ,β2 (6.11)
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D̃r(
a

r
) = ∂r(

a

r
) +O(1)

∆r2

r3

1

(1 + r)α1+λ(1 + |x|)β1
|||a|||3,α1+λ+3,β1 (6.12)

D̃r(ra) = ∂r(ra) +O(1)
∆r2

r

1

(1 + r)α1+λ(1 + |x|)β1
|||a|||3,α1+λ+3,β1 (6.13)

and

D̃x(
b

r
) = ∂x(

b

r
) +O(1)∆x2 1

(1 + r)α2+µ(1 + |x|)β2
|||b|||3,α2+µ,β2 (6.14)

D̃x(rb) = ∂x(rb) +O(1)r2∆x2 1

(1 + r)α2+µ(1 + |x|)β2
|||b|||3,α2+µ,β2 (6.15)

D̃r(
b

r
) = ∂r(

b

r
) +O(1)

∆r2

r3

1

(1 + r)α2+µ(1 + |x|)β2
|||b|||3,α2+µ+3,β2 (6.16)

D̃r(rb) = ∂r(rb) +O(1)
∆r2

r

1

(1 + r)α2+µ(1 + |x|)β2
|||b|||3,α2+µ+3,β2 (6.17)

for any λ, µ ∈ R. We apply (6.12), (6.15) with λ = −1
2
, µ = 5

2
to get

r|D̃r(
a
r
)D̃x(rb)− ∂r(

a
r
)∂x(rb)|

= r|D̃r(
a
r
)D̃x(rb)− ∂r(

a
r
)D̃x(rb) + ∂r(

a
r
)D̃x(rb)− ∂r(

a
r
)∂x(rb)|

= O(|D̃x(rb)|)∆r2

r2
1

(1+r)α1−
1
2 (1+|x|)β1

|||a|||3,α1+ 5
2
,β1

+O(|∂r(
a
r
)|)r3∆x2 1

(1+r)α2+5
2 (1+|x|)β2

|||b|||3,α2+ 5
2
,β2

Moreover, since

r3|∂r(
a

r
)| ≤ 1

(1 + r)α1− 5
2 (1 + |x|)β1

‖a‖1,α1+ 1
2
,β1

and

|D̃x(rb)| = |∂x(rb)(ξ, r)| ≤ r2 1

(1 + r)α2+ 1
2 (1 + |x|)β2

‖b‖1,α2+ 1
2
,β2

it follows that

r|D̃r(
a
r
)D̃x(rb)− ∂r(

a
r
)∂x(rb)|

≤ C(∆x2 + ∆r2) 1
(1+r)α1+α2 (1+|x|)β1+β2

(|||a|||3,α1+ 5
2
,β1
‖b‖1,α2+ 1

2
,β2

+ ‖a‖1,α1+ 1
2
,β1
|||b|||3,α2+ 5

2
,β2

)

≤ C(∆x2 + ∆r2) 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||3,α1+ 5
2
,β1
|||b|||3,α2+ 5

2
,β2
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Similarly, from (6.17) and (6.10), we have

r|D̃x(
a
r
)D̃r(rb)− ∂x(

a
r
)∂r(rb)|

= r|D̃x(
a
r
)D̃r(rb)− D̃x(

a
r
)∂r(rb) + D̃x(

a
r
)∂r(rb)− ∂x(

a
r
)∂r(rb)|

= O(|D̃x(
a
r
)|)∆r2 1

(1+r)α2−
1
2 (1+|x|)β2

|||b|||3,α2+ 5
2
,β2

+O(|∂r(rb)|)r∆x2 1

(1+r)α1+5
2 (1+|x|)β1

|||a|||3,α1+ 5
2
,β1

≤ C∆r2 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||1,α1+ 1
2
,β1
|||b|||3,α2+ 5

2
,β2

+ C∆x2 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||3,α1+ 5
2
,β1
|||b|||1,α2+ 1

2
,β2

≤ C(∆x2 + ∆r2) 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||3,α1+ 5
2
,β1
|||b|||3,α2+ 5

2
,β2

This gives (6.7).

For (6.8), we have

D̃x(fD̃rg)− ∂x(f∂rg)

= D̃x(f(D̃r − ∂r)g) + (D̃x − ∂x)(f∂rg)

= ∂x(f(D̃r − ∂r)g)|(ξ,r) + 1
6
∆x2∂3

x(f∂rg)|(x,η)

= (∂xf)((D̃r − ∂r)g)|(ξ,r) + f((D̃r − ∂r)∂xg)|(ξ,r) + 1
6
∆x2∂3

x(f∂rg)|(x,η).

(6.18)

We proceed with individual terms in (6.18) with f = a
r

and g = rb. From (6.15) with

µ = −1
2
, we have

r
∣∣∣(∂x

a
r
)(D̃r − ∂r)(rb)

∣∣∣ ≤ C|∂x(
a
r
)|∆r2 1

(1+r)α2−
1
2 (1+|x|)β2

|||b|||3,α2+ 5
2
,β2

≤ C∆r2 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||1,α1+ 1
2
,β1
|||b|||3,α2+ 5

2
,β2

Similarly, from (6.17)

r
∣∣∣ar (D̃r − ∂r)∂x(rb)

∣∣∣
≤ C∆r2|a

r
| 1

(1+r)α2+1
2 (1+|x|)β2

|||∂xb|||3,α2+ 7
2
,β2

≤ C∆r2 1
(1+r)α1+α2 (1+|x|)β1+β2

‖a‖0,α1− 1
2
,β1
‖b‖4,α2+ 7

2
,β2
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r
∣∣∆x2∂3

x(
a
r
∂r(rb))|(x,η)

∣∣
≤ C∆x2

∣∣r∂3
x

(
a
r

)
∂r(rb) + r

(
a
r

)
∂3

x∂r(rb)
∣∣

≤ C∆x2 1
(1+r)α1+α2 (1+|x|)β1+β2

(
‖a‖3,α1+ 5

2
,β1
‖b‖1,α2+ 1

2
,β2

+ ‖a‖0,α1− 1
2
,β1
‖b‖3,α2+ 7

2
,β2

)
≤ C∆x2 1

(1+r)α1+α2 (1+|x|)β1+β2
|||a|||3,α1+ 5

2
,β1
|||b|||4,α2+ 7

2
,β2

Therefore,

r|D̃x(
a

r
D̃r(rb))−∂x(

a

r
∂r(rb))| ≤ C(∆x2+∆r2)

1

(1 + r)α1+α2(1 + |x|)β1+β2
|||a|||3,α1+ 5

2
,β1
|||b|||4,α2+ 7

2
,β2

Similarly, we have

r|D̃x(raD̃r(
b

r
))−∂x(ra∂r(

b

r
))| ≤ C(∆x2+∆r2)

1

(1 + r)α1+α2(1 + |x|)β1+β2
|||a|||3,α1+ 5

2
,β1
|||b|||4,α2+ 7

2
,β2

This gives (6.8).

We continue with (6.9). For the first term, we write

D̃r(aD̃xb)− ∂r(a∂xb) = D̃r(a(D̃x − ∂x)b) + (D̃r − ∂r)(a∂xb)

Since a, b ∈ C4
s (R×R+), by extending a, b to an odd function across r = 0, we see that the

extended aD̃xb is in C4(R2), therefore

D̃r(a(D̃x − ∂x)b) = ∂r(a(D̃x − ∂x)b)|(x,η)

=
(
∂ra(D̃x − ∂x)b+ a(D̃x − ∂x)(∂rb)

)
|(x,η)

= ∆x2

6

(
∂ra∂

3
xb|(ξ1,η) + a∂3

x∂rb|(ξ2,η)

)
and

r|D̃r(a(D̃x − ∂x)b)| ≤ C∆x2 1

(1 + r)α1+α2(1 + |x|)β1+β2
|||a|||1,α1+ 1

2
,β1
|||b|||4,α2+ 7

2
,β2
.

Similarly, the extended a∂xb is in C3(R2), we have

r|(D̃r − ∂r)(a∂xb)| = r∆r2

6
∂3

r (a∂xb)|(x,η)

≤ C∆r2 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||3,α1+ 5
2
,β1
|||b|||4,α2+ 7

2
,β2
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The second term in (6.9) can be treated similarly,

1

r
D̃r(r

2aD̃xb)−
1

r
∂r(r

2a∂xb) =
1

r
D̃r(r

2a(D̃x − ∂x)b) +
1

r
(D̃r − ∂r)(r

2a∂xb) (6.19)

Again, the extensions of r2a(D̃x − ∂x)b and r2a∂xb are in C3(R2) and C4(R2) respectively,

we can directly estimate these two terms by

1
r
D̃r(r

2a(D̃x − ∂x)b) = 1
r
∂r(r

2a(D̃x − ∂x)b)|(x,η)

= 1
r

((
∂r(r

2a)(D̃x − ∂x)b
)

(x,η)
+
(
r2a(D̃x − ∂x)(∂rb)

)
(x,η)

)

= ∆x2

6

(
((r∂ra+ 2a)∂3

xb)(ξ1,η) + (ra∂3
x(∂rb))(ξ2,η)

)
(6.20)

and
1

r
(D̃r − ∂r)(r

2a∂xb) =
∆r2

r
∂3

r (r
2a∂xb)(x,η) =

∆r2

r
∂3

r

(
r4a

r
∂x(

b

r
)

)
(x,η)

(6.21)

From (6.19), (6.20) and (6.21), we easily have

|1
r
D̃r(r

2a(D̃x − ∂x)b)|

≤ C∆x2 1
(1+r)α1+α2 (1+|x|)β1+β2

(
|||a|||1,α1+ 1

2
,β1
|||b|||3,α2+ 5

2
,β2

+ ‖a‖0,α1− 1
2
,β1
|||b|||4,α2+ 7

2
,β2

)
≤ C∆x2 1

(1+r)α1+α2 (1+|x|)β1+β2
|||a|||1,α1+ 1

2
,β1
|||b|||4,α2+ 7

2
,β2

(6.22)

and

1

r

∣∣∣(D̃r − ∂r)(r
2a∂xb)

∣∣∣ ≤ C∆r2 1

(1 + r)α1+α2(1 + |x|)β1+β2
|||a|||3,α1+ 5

2
,β1
|||b|||4,α2+ 7

2
,β2

(6.23)

From (6.22) and (6.23), we conclude that∣∣∣1r D̃r(r
2aD̃xb)− 1

r
∂r(r

2a∂xb)
∣∣∣

≤ C(∆x2 + ∆r2) 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||3,α1+ 5
2
,β1
|||b|||4,α2+ 7

2
,β2

This gives (6.9) and completes the proof of Lemma 16. �

As a direct consequence of Lemma 16, we have the pointwise estimate for the Jacobians
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Lemma 17 If a, b ∈ C4
s (R×R+), then

1

r
|Jh(ra, rb)− J(ra, rb)| ≤ C(∆x2 + ∆r2)

1

(1 + r)α1+α2(1 + |x|)β1+β2
|||a|||4,α1+ 7

2
,β1
|||b|||4,α2+ 7

2
,β2

r|Jh

(a
r
, rb
)
− J

(a
r
, rb
)
| ≤ C(∆x2 + ∆r2)

1

(1 + r)α1+α2(1 + |x|)β1+β2
|||a|||4,α1+ 7

2
,β1
|||b|||4,α2+ 7

2
,β2

for any α1, α2, β1, β2 ∈ R.

From (5.3), Lemma 14 and Lemma 17, we can easily derive (5.28-5.30). This completes

the proof of Lemma 13. �
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