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Abstract

The purpose of this paper is to introduce a fast analysis technique for decompos-
ing time-series into a set of intrinsic mode functions (IMFs) and a residual trend.
This decomposing technique, known as the empirical mode decomposition, tradi-
tionally uses cubic-splines in the decomposing process thus creating the need to
solve a system of equations, albeit well conditioned, at each step. This new method
being proposed takes advantage of the theory of matrix-free moving least-squares
approximation to construct discrete reproducing kernels capable of interpolation to
a near natural cubic-spline fit without the need for solving a system of equations. A
class of compactly supported radial functions used in constructing the reproducing
kernels is also given along with numerical examples validating the robustness of the
fast algorithm.
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1 Introduction

As an adaptive nonlinear decomposition technique referred to as Empirical
Mode Decomposition (EMD), the wide ranging applications this method has
been applied to the past few years have varied from analyzing climatology data
for climate variability to the study of white noise characteristics in biological
data. Being derived from the simple assumption that any data consists of
simple unique oscillating modes instrinsic to the data, the EMD is completely
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a posteriori in regards to the decomposition of the data into intrinsic mode
functions (IMFs) and does not assume anything about the data, contrary
to Fourier methods where data is assumed linear and stationary. Because of
the adaptive nature of EMD, this method has been shown numerically to
better describe temporal patterns in nonstationary nonlinear time series than
traditional methods such as Wavelet and Fourier methods [5]. Furthermore,
coupled with the Hilbert transform applied to the resulting IMFs (Hilbert-
Huang transform), this decomposition method is well localized in the time-
frequency domain and reveals important characteristics of the signal. Despite
the success over the past few years of this analysis tool, it still lacks the speed
of traditional Wavelet and Fourier methods which have become standards in
the mathematical, statistical, and engineering industry partly due to their
associated ’fast’ transform algorithms and ’black-box’ style implementations.

In this paper, we introduce a new computational algorithm for EMD which re-
lies on the theory of reproducing kernels constructed in a moving-least squares
sense [3]. As will be shown in the analysis of the method, the main motiva-
tion for such a new computational algorithm is a large gain in computational
speed. This new technique for EMD is purely matrix-free and thus no linear
systems need to be solved, in contrast to the original formulation of EMD by
Huang et al.

In order to present this fast algorithm for empirical mode decomposition in an
efficient and clear manner, two recently developed approximation tools need
presentation. We thus organize the paper as follows. Before briefly reviewing
the EMD algorithm, the next two sections present a matrix-free moving least
squares reproducing kernel builder which will be used in the computation
of the EMD algorithm. The next section deals with a review of the EMD
algorithm as developed by Huang in [5]. We then propose a fast algorithm for
extracting the IMFs in the EMD algorithm by applying the the approximation
methods presented in sections 2 and 3. Finally, we will then conclude with
numerical examples of the fast algorithm applied to a sample time series.

2 Matrix-free Moving Least Squares

Matrix-free moving least-squares (MLS) reproducing kernels were developed
recently with the intention of eliminating the computational complexity of
standard moving least-squares. They have mainly been used in recent years
in scattered data approximation and in meshless approximation methods for
partial differential equations. In this paper, we apply matrix-free MLS to build
reproducing kernels for the empirical mode decomposition algorithm. Here, we
review a method developed by Fasshauer [2] for constructing discrete repro-
ducing kernels in the moving least-squares sense without the need of solving
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any systems of equations. As discussed in [2], this matrix-free formulation
offers a computationally efficient MLS approximation without the computa-
tional burden of having to solve many linear systems as in standard MLS,
which is the main drawback of and reason why the latter has not become a
popular approximation tool. We begin with the so-called Backus-Gilbert ap-
proach for MLS approximation first described by Bos and Salkauskas which
considers a reproducing kernel of the form

Pf(x) =
N∑

i=1

f(xi)Ψi(x). (1)

where f = [f(x1), ..., f(xN)]T represents the given data. This reproducing
kernel Ψi(x) is constructed to be minimized subject to some approximation
space reproduction constraints, namely

1

2

N∑

i=0

Ψ2
i (x)

1

W (x,xi; β)
(2)

subject to

N∑

i=0

φ(xi)Ψi(x) = φ(x), for all φ ∈ U . (3)

U is an approximation space of dimension m and the W (x,xi) are positive
weight functions with respect to an important shape parameter β that con-
trols the interpolation qualities of this method. The closeness of the discrete
reproducing kernel Ψi(x) to the pointwise cardinal functions, (i.e., Ψi(xj) =
δi,j, i, j = 1, ...N) determines how well the summation in (1) approximates the
function f(x). Since (1) is itself a function, we can evaluate it at any point
on the given domain, this leads to a quadratic minimization problem for an
evaluation point x. To this end, defining Ψ(x) = [Ψ(x,x1), ...,Ψ(x,xN)]T and

1

2
Ψ(x)TQ(x)Ψ(x)

with

Q(x) = diag(
1

W (x,x1; β)
, ...,

1

W (x,xN ; β)
)

The approximation space reproduction can be written as

AΨ(x) = p(x),

with Aji = φj(xi), i = 1, ...N, j = 1, ...m and φ = [φ1, ..., φm]T , the basis of
U . Using Lagrangian multipliers to solve this MLS problem leads to a system
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where we solve for the Langrangian multipliers and the reproducing kernel
functions and has the form




Q(x) −AT

A 0







Ψ(x)

λ(x)


 =




0

φ(x)


 (4)

Since A has full rank and Q is invertible, we can apply Gaussian elimination
to the block matrix and arrive at

λ(x) = (AQ−1(x)AT )−1φ(x) (5)

Ψ(x) = (Q−1(x)ATλ(x)). (6)

But this just means that the Lagrangian multipliers λ(x) at the evaluation
point x are given as the solution to the Gram system

G(x)λ(x) = φ(x). (7)

where the entries of G are the weighted l2-inner products, namely

G(x)jk = 〈φj, φk〉W (x,xi;β) =
N∑

i=1

φj(xi)φk(xi)W (x,xi; β), j, k = 1, . . . ,m.(8)

We note the the Gram matrix is symmetric and positive definite because of
the positive weights and the basis being linearly independent.

This gives an explicit form of the generating functions which are

Ψi(x) = W (x,xi; β)
m∑

j=1

λj(x)pj(xi), i = 1, . . . , N. (9)

Therefore, after determining the Lagrangian multipliers, we can determine
the explicit form of the reproducing kernel. With this formulation, however,
an m×m Gram system must be solved at each evaluation point x.

In order to arrive at a more efficient computation of MLS where no linear sys-
tems need to be solved, we must restrict the approximation space U to shifted
monomials pi(x) = (xi − x)α for x ∈ R, 0 ≤ α ≤ q and xi an interpolation
point. Although our approximation space is now restricted, we still have the
freedom in choosing the weight function W (xi,x; β) which can already have
certain approximation properties built in it.
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The main advantage in choosing such an approximation space is that we now
have the ability to solve for λj in the Backus-Gilbert approach analytically.
This is done by choosing the dimension of the shifted-monomial space U to be
relatively small (e.g. m ≤ 4). This way, the resulting reproducing kernels can
be constructed analytically and can be directly programmed into computer
code. To illustrate, we give a couple of examples from [2] to construct a one-
dimensional reproducing kernel. We first define the moments

µα =
N∑

i

(xi − x)αW (xi,x; β) x ∈ R xi ∈ Ix

where Ix is a set of N distinct points in the domain of interest [0, T ].

Example 1
If we let m = 2, the polynomial space becomes U = span{p1(s) = 1, p2(s) =
s− x}. Choosing W (xi,x; β) to be a positive weight function, then

λ1(x) =
µ2

µ0µ2 − µ2
2

, λ2(x) =
µ1

µ2
1 − µ0µ2

. (10)

We can then use the λjs and weight function W (xi,x; β) to create the discrete
reproducing kernel as

Ψi(x) = [λ1(x) + λ2(x)(xi − x)]W (xi,x; β), i = 1, . . . , N. (11)

Example 2
If we let m = 3, the polynomial space becomes U = span{p1(s) = 1, p2(s) =
s−x, p3(s) = (s−x)2}. Choosing W (xi,x; β) to be a positive weight function,
then

λ1(x) =
µ2µ4 − µ2

3

D
, λ2(x) =

µ2µ3 − µ1µ4

D
, λ2(x) =

µ1µ2 − µ2
2

D
(12)

where D = 2µ1µ2µ3−µ0µ
2
3−µ3

2−µ2
1µ4 +µ0µ2µ4 Now we can then use the λjs

and weight function W (xi,x; β) to create the discrete reproducing kernel as

Ψi(x) = [λ1(x) + λ2(x)(xi − x) + λ3(x)(xi − x)2]W (xi,x; β), i = 1, . . . , N.(13)

3 Empirical Mode Decomposition

As an innovative time series analysis tool, EMD developed by Huang et al.
in [5] has proven to be an important alternative to traditional methods for
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analyzing time series such as wavelet methods, Fourier methods, and empiri-
cal orthogonal functions. For an in-depth description of EMD along with its
coupled Hilbert transform for studying the notion of instantaneous frequency,
the reader is referred to the original paper by Huang et al. In this section we
briefly describe the computations of the traditional EMD algorithm and then
show how to apply matrix-free MLS reproducing kernels and approximate
approximation for an overall faster computational approach to this novel de-
compostion tool.

The goal of EMD is to decompose a time series into a finite number of intrinsic
mode functions plus a residual which is conventionally termed as the time
series trend. In [6], a good analysis of properties of IMFs is given along with
a description of why they are important in a posteriori data decomposition.

To briefly summarize, an IMF is a function that satisfies two conditions: (1)
The number of extrema and zero-crossings of the function along the domain
of interest must be equal or differ by no more than one; (2) The mean at
any point of the envelope defined by the local maxima and local minima is
zero. It is also interesting to note that a larger class of functions to IMFs,
namely functions that only satisfy property (1), are solutions to the self-adjoint
ordinary differential equation

d

dx

(
P
du

dx

)
+Qu = 0, x ∈ (a, b)

where P > 0 and P,Q are both continuous functions. For further details on
solutions to self-adjoint ODEs, the reader is referred to ([6]) and references
therein.

Let f(t) be a time series defined on an interval [0, T ]. We wish to decompose
f(t) into a set of IMFs ψn(t) and a residual trend R(t) such that f(t) =∑
n ψn(t) + R(t). Locating the IMFs of f(t) is accomplished by the following

steps:

Initiate Set n := 0, f0 = f(t)

• Step 1 Set h0 := fn and k := 0
• Step 2 Construct the upper and lower envelopes for hk

This is done by locating all local maxima and minima and then interpo-
lating the extrema via cubic splines to use as the upper envelope U(t) and
the lower envelope L(t).
• Step 3 Sifting process

Since L(t) ≤ fk(t) ≤ U(t) we can define the mean of the envelopes as
mk(t). The k + 1th component is then defined to be hk+1 := hk − mk.
hk+1 is then tested for IMF critera. If hk+1 is not an IMF, increment k and
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repeat from Step 2. Otherwise set ψn := hk+1 and set fn+1 := fn − ψn.
If convergence criteria are met for fn+1, stop. Otherwise, increment n and
return to Step 1.

A few further details of the algorithm and its terminating criteria are now in
order. First, when testing hk+1 for IMF criteria in the sifting process, two tests
must be passed. The number of extreme and zero-crossings must not differ by
more than one. The second criterion is that the mean between the upper and
lower envelopes must be close to zero according to some criterion. In [4], an
approach to choosing this criteria was proposed to guarantee globally small
fluctuations in the mean while taking into account locally large excursions.
This is accomplished by introducing at each sifting iteration an amplitude
a(t) = (U(t)−L(t))/2 and an evalutation function σ(t) =

∣∣∣m(t)
a(t)

∣∣∣. According to

two thresholds, θ1 and θ2, we then iterate until σ(t) < θ1 for a certain fraction
γ of the iterations and then until σ(t) < θ2 for the other fraction of iterations.

The second set of criteria for algorithm termination that has to be met is with
regards to fn+1. For each iteration n of the algorithm, the time series fn(t)
loses extrema after subtracting the IMF. Therefore, after a finite number of
iterations, fn+1 will tend to a monotonic or constant function and the EMD
algorithm terminates.

As described in [5], the sifting process is meant to eliminate riding waves and
extract a more symetric wave profile in hk, eventually smoothing uneven waves.
However, although a powerful method, EMD must be used cautiously when
extracting the IMFs. As mentioned in [4] when locating the extrema of the
time series at each sifting process, the end points (boundary conditions) of the
time series are to be treated differently in order to minimize error propagations
due to finite observations in length. There are a variety of techniques that have
been used in past studies on EMD, and [4] offers one of the simplest yet very
robust by mirrorizing the extrema at the time series boundary conditions.

3.1 A Fast Empirical Mode Decomposition Technique

We now propose a technique that can be used to yield faster computational
results in decomposing a nonstationary nonlinear time series into a set of IMFs.
The main motivation in seeking a faster computational technique stems from
the fact that for large time series data sets (e.g. O(103)), the cubic spline
interpolation procedure in constructing the envelopes can be a computational
burden, since a linear system must be solved at every sifting iteration. In this
version of the algorithm, at each sifting iteration, we apply a matrix-free MLS
reproducing kernel to the extrema of the time series, which is a linear O(K)
operation where K is the number of evaluation points of the envelopes. We
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also note that much of the methods speed comes from the ability to reuse the
discrete reproducing kernels if the amount of extrema has not changed. This
greatly speeds up the computational time of the sifting process in Step 3.
Despite the method’s speed and accuracy in interpolation, special care must
be considered when choosing the weight function W (xi,x; β) of the kernel and
its shape parameter β. When chosen correctly, the resulting interpolation with
the reproducing kernel will be relatively close to the cubic spline interpolation.

In addition to proposing the fast technique, we also propose a class of com-
pactly supported radial weight functions known for their superior approxima-
tion abilities and fast summation properties that can be used in constructing
the reproducing kernel. For the shape parameter, we devise a remedy which
will automatically select a near optimal shape parameter for the reproducing
kernel that depends strictly on the amount of extrema needing interpolation.

Initiate Set n := 0, f0 = f(t)

• Step 1 Set h0 := fn and k := 0
• Step 2 Construct the upper and lower envelopes for hk
· Locate all Nmax local maxima hmaxk,i and Nmin local minima hmink,j , ti, tj ∈

[0, T ] of hk.
· Construct a sub-grid on [0, 1] of Nmax uniformly spaced points and another

sub-grid on [0, 1] of Nmin uniformly spaced points while placing normalized
values of hmax(ti) and hmin(tj) on their respective sub-grids.
· If number if extrema for iteration k is different from k− 1, construct new

matrix-free MLS reproducing kernels Ψmax
i (t),Ψmin

j (t) with respect to the
two sub-grids of Nmax and Nmin points. Calculate the upper and lower
envelopes U(t) and L(t) by applying the reproducing kernels as

U(t) =
Nmax∑

i=0

hmaxk,i Ψmax
i (t) t ∈ [0, 1] (14)

and

L(t) =
Nmin∑

j=0

hmink,j Ψmin
j (t) t ∈ [0, 1] (15)

· Rescale uniform grid points back onto [0, T ] along with the upper and
lower envelopes U(t) and L(t).

• Step 3 Sifting process
Since L(t) ≤ fk(t) ≤ U(t) we can define the mean of the envelopes as

mk(t). The k+ 1th component is then defined to be hk+1 := hk−mk. Next,
hk+1 is tested for IMF critera. If hk+1 is not an IMF, increment k and repeat
from Step 2. Otherwise set ψn := hk+1 and set fn+1 := fn−ψn and rebuild
reproducing kernels Ψmax

i (t), Ψmin
j . If convergence criteria is met for fn+1,

stop. Otherwise, increment n and return to Step 1.
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The normalization of the extrema data and placement on the uniform sub-
grid are necessary in order to ensure proper handling of the shape parameter
for the weight function W (xi,x; β). To this end, we propose a class of weight
functions in the following section on numerical examples called Wendland
functions which are radial with compact support and have been shown in
many papers such as [7] to yield powerful approximation qualities and fast
summations due to their compact support. With these compactly supported
functions, the shape parameter β allows us to adapt the support radius which
can ensure that there are enough points xi covered in the summation for U(t)
and L(t) while at the same time leaving out the points outside the radius.
This property contributes even further to the fast computation time of the
algorithm since one needs only to sum up on the points inside the radius of
influence. For more information on compactly supported radial functions of
minimal degree, the reader is referred to Wendland’s work in [8] and references
therein.

4 Numerical Examples

In this section, we aim at showing the robustness of this fast computational
method by investigating the L1 error of the envelopes at the extrema of sev-
eral time series examples. In order to minimize this error and produce an
interpolant for the envelopes which resembles a cubic-spline fit, optimal shape
parameters for the weight functions must be chosen. To this end, we give
formulas for near optimal parameters for several different weight functions.
Furthermore, in order to validate this approach to the EMD algorithm, close-
ness of the matrix-free moving least squares reproducing kernel envelope fit
to the cubic-spline envelope fit must be shown.

As discussed in [4], the key importance in the EMD algorthm is obtaining
estimates of the IMFs of the time series in a robust manner. Errors in interpo-
lating the extrema can tend to increase the amount of sifting iterations which
ultimately “over-decomposes” the signal by spreading out their components
over adjacent nodes. Another issue in the interpolation of the extrema is min-
imizing error propagations due to finite observation lengths. To this end, [4]
suggests mirrorizing the extrema at the ends of the time series which is the
method used throughout these numerical examples.

We first begin by listing four examples of weight functions that can be used
and their associated near optimal shape parameters that should be used for the
fast EMD algorithm which were approximated by numerical tests. Let Next be
the number of local maxima or minima in the time series, r = |xi−x|/β, and
|Ω| be the length of the time series. The table below shows the 4 commonly
used radial functions for matrix-free MLS which were used throughout testing
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the fast computational method presented in this paper. For theory on these
radial functions, the reader is referred to [1] and references therein.

Name W (xi,x;β) β

O(h4) Gaussian 1√
π

(3
2 − r2)e−r

2 |Ω|/4 + 10−4 ×Next

O(h6) Gaussian 1√
π

(15
8 − 5

2r
2 + 1

2r
4)e−r

2 |Ω|/4 + 10−4 ×Next

O(h2) Wendland (1− r)3
+(3r + 1) 2|Ω|+ 10−4 ×Next

O(h4) Wendland (1− r)5
+(8r2 + 5r + 1) 2|Ω|+ 10−4 ×Next

Table 1
Weight Functions and their approximated optimal shape parameters

In our first numerical example of the enveloping process using the matrix-free
MLS reproducing kernel method, we show the L1 errors of interpolating the
extrema in a“toy” time series given by

f(t) = sin(t) cos(t)(1.354t) + 10 sin(2.3t+ 10 cos(t)) (16)

The weight function that we use throughout these examples is the 2nd or-
der compactly supported Wendland function. The figures below show the en-
velopes generated by the reproducing kernel method for 170, 200, and 230
sampled points with the amount of extrema increasing for an increasing num-
ber of sample points. We used the formula for the optimal shape parameter
given in the above table.
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 0  0.2  0.4  0.6  0.8  1

’TimeSeries170’
’UpperEnv170’
’LowerEnv170’

Fig. 1. Plot of envelopes for 170 points

We remark that when the number of sampling points in the time series changes,
a new reproducing kernel does not necessarily need to be constructed. Only
when the number of extrema or the placement of the extrema changes does
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Fig. 2. Plot of envelopes for 200 points
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Fig. 3. Plot of envelopes for 230 points

the O(Next) process of building a kernel for extrema interpolation need to take
place.

Although the reproducing kernel method does not exactly interpolate the ex-
trema as cubic splines do, the errors at the extrema introduced during interpo-
lation are small enough not to introduce unnecessary oscillatory effects which
could perturb the sifting process and ultimately lead to an “over-domposition”
of the time series. Table (2) shows the L1 errors of the interpolation at the
extrema (local maxima) points Nmax for an increasing amount of sampled
points in the “toy” time series (16). Since the distribution of local maxima be-
comes more dense when the number of sampled points N increases, we expect
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the interpolation error results to decrease since more data information for the
matrix-free moving least-squares reproducing kernel construction is available.

L1 error Nmax L1 error Nmax

5.37156e-02 10 8.27118e-05 60

3.57931e-03 22 4.53544e-05 71

1.58906e-03 28 9.26301e-06 80

9.12094e-04 41 5.11399e-06 88

4.22903e-04 48 3.1146e-06 92

Table 2
L1 errors at envelope interpolation points for time series sampled at N points

In our final numerical example, we show the closeness of the matrix-free MLS
constructed reproducing kernel interpolation of the extrema to the cubic-spline
fit. To facilitate the comparison, we chose to sample the time series at 60 and
100 points and plot the upper part of the envelopes for the cubic-spline and
kernel interpolation results. Figures (4) and (5) show the closeness of the two
different upper envelopes for the sampled time series. It is easy to see that the
closeness of the MLS reproducing kernel fit to the cubic-spline fit improves for
an increasing amount of extrema.
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’UpperEnv60’

Fig. 4. Comparison of cubic-spline and reproducing kernel upper envelopes for 60
points
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Fig. 5. Comparison of cubic-spline and reproducing kernel upper envelopes for 100
points

5 Conclusion

In this paper we attempted to introduce a fast computational algorithm for
EMD which relies on the theory of MLS reproducing kernels. Although theo-
retical work for convergence rates of the matrix-free MLS reproducing kernel
method still remains a difficult research domain for applications such as par-
tial differential equations due to the dependence on the shape parameter for
the weight functions and dimension of problem, the method has been shown
in this paper to yield promising results for extrema interpolation in extracting
IMFs in the empirical mode decomposition algorithm. Since the EMD method
deals uniquely with 1-D time-series that can scale the time series extrema to
a sub-grid, providing a near optimal shape parameter for the weight function
can be accomplished with relative ease and should not pose a threat to the
efficiency of the method. Furthermore, due to its robust fast computational
time, the method provides an attractive alternative to the traditional cubic-
spline approach which suffers from slow computation time due to the necessity
of solving a linear system.

Future work of this computational method includes embedding it into the
Hilbert-Huang transform to produce a fast method for obtaining well-localized
time-frequency representations of time series. More information on the Hilbert-
Huang transform can be found in [5]. Lastly, adapting this method for use in
2-D signals is also currently being investigated.
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