
Contemporary Mathematics

Moving Mesh Methods for Computational Fluid Dynamics

Tao Tang

Abstract. In this paper we will discuss a class of adaptive grid methods
called moving mesh method (MMM). Some recent progress of the moving
mesh methods will be reviewed. In particular, we review their applications to
computational fluid dynamics.

Contents

1. Introduction 1
2. Interpolation free MMM 2
3. MMM using interpolation I: finite element approach 5
4. MMM using interpolation II: finite volume approach 11
5. Application I: incompressible flow simulations 15
6. Application II: hyperbolic conservation laws 20
7. Concluding remarks 27
References 29

1. Introduction

In the past two decades, several adaptive strategies have been used for compu-
tational fluid dynamics (CFD) problems. We classify them as follows:

• h-method. The h-method involves automatic refinement or coarsening of
the spatial mesh based on a posteriori error estimates or error indica-
tors. The overall method contains two independent parts, i.e. a solution
algorithm and a mesh selection algorithm.

• p-method. The p-method involves the adaptive enrichment of the polyno-
mial order.

• r-method. The r-method is also known as moving mesh method (MMM).
It relocates grid points in a mesh having a fixed number of nodes in such

1991 Mathematics Subject Classification. 65M93, 35L64, 76N10.
Key words and phrases. Moving mesh methods, computational fluid dynamics, partial dif-

ferential equation .

c©0000 (copyright holder)

1

2 TAO TANG

a way that the nodes remain concentrated in regions of rapid variation of
the solution.

In this article, some recent results on moving mesh methods in CFD will be
presented. The moving mesh methods require to generate a mapping from a regular
domain in a parameter space Ωc to an irregularly shaped domain in physical space
Ω. By connecting points in the physical space corresponding to discrete points in the
parameter space, the physical domain can be covered with a computational mesh
suitable for the solution of finite difference/element equations. The key ingredients
of the moving mesh methods include:

• Mesh equations. The mesh equations determine a one-to-one mapping
from a regular domain in a parameter space to an irregularly shaped
domain in physical space. By connecting points in the physical space
corresponding to discrete points in the parameter space, the physical do-
main can be covered with a computational mesh suitable for the solution
of finite difference/difference/element equations. Choosing suitable mesh
equations and solving them efficiently are very crucial for an effective
moving mesh method;

• Monitor function. A monitor function is used to guide the mesh redis-
tribution. It may depend on the solution arclength (in 1D), curvature, and
a posteriori errors. In practice, local (spatial) smoothing of the monitor
function is necessary, see, e.g., [23, 51];

• Interpolations. If the mesh equations are time-dependent and are solved
simultaneously with the given differential equations, then interpolation of
dependent variables from the old mesh to the new mesh is unnecessary.
Otherwise, some kind of interpolation is required to pass the solution
information on the old mesh to the newly generated mesh.

In using moving mesh methods for solving CFD problems, extra attentions have
to be paid to guarantee that the important properties for the physical solutions will
not be lost after moving the grids. For example, to solve the incompressible Navier-
Stokes equations in the primitive variables formulation, one of the main difficulties
in developing a moving mesh scheme is how to keep the divergence-free property
for the velocity field.

The paper is organized as follows. In Section 2, we will review some results
on the interpolation-free moving mesh methods. Sections 3 and 4 describe mov-
ing mesh methods using interpolations with two different types of discretization
approach. The applications of the methods introduced in Sections 3 and 4 are
reported in Sections 5 and 6. The concluding remarks will be given in Section 7.

2. Interpolation free MMM

Among moving mesh methods, the moving finite element method of Miller
[71, 72] and the moving finite difference method of Dorfi & Drury [34] have aroused
considerable interest. Some earlier works were reviewed by Hawken et al. in [45].
In these moving finite element approaches, the mesh equation and the original dif-
ferential equation are often solved simultaneously for the physical solution and the
mesh. Consequently, interpolation of dependent variables from the old mesh to the
new mesh is unnecessary. In this sense, we call this class of methods interpolation-

free moving mesh methods.

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 3

The principal ingredients of the interpolation-free moving mesh methods in-
clude:

• Equidistribution principle. It is first introduced by de Boor [30] for
solving boundary value problems for ordinary differential equations. It
involves selecting mesh points such that some measure of the solution error
is equalized over each subinterval. It has turned out to be an excellent
principle for formulating moving mesh equations.

• Moving mesh equation. The major role of the moving mesh equation
is to concentrate sufficient points in regions of rapid variation of the so-
lution. A satisfactory mesh equation should be simple, easy to program,
and reasonably insensitive to the choice of its adjustable parameters. As
compared with the problem of discretizing the underlying physical equa-
tion, this task is purely artificial. That is, the construction of a moving
mesh equation cannot be guided completely by physical arguments and
must rely on some numerical principles.

• The method of lines (MOL) approach. Most moving mesh codes are
designed with the method of lines approach. In MOL, the partial differen-
tial equations are first discretized by a finite difference or a finite element
method. The resulting equations form a system of ordinary differential
equations (ODEs) or differential algebraic equations (DAEs). Then exist-
ing ODE or DAE softwares can be used for the time integration. After
coupling the moving mesh equation with the original physical equations,
the system of ODEs usually becomes strongly stiff because of the irregu-
larity of the grid and the large time scale in controlling the mesh moving.
This is why most of the moving mesh codes use a stiff ODE solver for
time integration.

2.1. Moving mesh finite element approaches. The moving finite element
method (MFEM) uses a very natural and elegant formulation to control mesh move-
ment. The solution and mesh are both obtained by a process closely associated with
equidistribution of one error measure: the residual of the original equation written
in finite element form. The MFEM can be strongly linked to some equidistribution
principles when it is applied to parabolic differential equations. Adjerid & Fla-
herty [1, 2, 5] introduced an error estimate to handle mesh movement based on an
equidistribution principle. In [3, 4, 46, 15, 16], several other moving mesh meth-
ods are developed, based directly on equidistribution principles. Nevertheless, the
constructions are very different, and in their final forms the moving mesh equations
appear to be quite different from each other. In [85], a moving grid finite-element
method using grid deformation is proposed and studied.

In [73], some results on adaptive methods in CFD were reviewed, where an h-r
scheme was applied to shock computations (see also [37]).

The two basic types of methods, location based and velocity based, generally
involve respectively computing x by minimizing a variational form or computing
the mesh velocity v = xt using a Lagrangian like formulation. For the location
based methods, several variational forms were reviewed. One common type of
method involves solving the variational problem using a steepest descent method
to introduce the time derivative for grid movement, see, e.g., [10, 11, 12, 17].

4 TAO TANG

2.2. Moving mesh finite difference approaches. Several moving mesh
finite difference algorithms have been developed in past years. One was given by
Verwer and his research group at CWI (see, e.g., [40, 99]). Their moving mesh
technique is due to the moving finite difference method proposed by Dorfi & Drury
[34]. The spatial discretization is done by a second order nonlinear Galerkin-based
method, which is studied extensively in Skeel & Berzins [87]. Further works along
this line have been done by Zegeling [33, 103, 104, 106].

The moving finite difference algorithms are also developed by Russell and his
research group, see., e.g., [50, 49, 82, 83]. In particular, the moving mesh equation
is written as moving mesh partial differential equations (MMPDEs) based on the
equidistribution principle. The physical equations are basically discretized using
central differencing. Some practical aspects of formulation and solution of moving
mesh partial differential equations are reviewed in Huang [47]. The stability for this
type of moving mesh methods was studied in [64]. One of the successful applications
of the moving mesh PDE approach is given in [21] to solve (one-dimensional) PDEs
with blow up solutions (see also [65]).

2.3. Some discussions on interpolation-free MMMs. It is observed from
many numerical experiments that the interpolation-free moving mesh methods en-
joy several numerical advantages:

• They help the central difference to work for problems with large solu-
tion gradients or discontinuities, e.g., in resolving small-scale structures
in Boussinesq convection [25];

• They reduce the time variation to allow larger time step, due to the use
of the mesh velocity [82];

• They do not need interpolations between regriddings – unlike static meth-
ods, interpolation of dependent variables from the old mesh to the new
mesh is unnecessary. This is one of the major advantages of this approach;

• They can automatically detect, resolve, and track steep wave fronts and
moving boundaries.

The disadvantages of the moving mesh methods include:

• moving mesh method increases the stiffness of the system so it requires
implicit time integration to work efficiently;

• choosing time scale τ in equidistributing moving mesh methods is highly
heuristic.

As in many other moving mesh codes, there are several parameters that should
be specified by the user in the setting-up routine. Most of them are insensitive to
different applications and can be chosen by default. The most critical parameter
in equidistributing mesh moving strategies is the time scale τ . Many heuristic
guidelines for how to choose τ have been proposed in the past decade, but none of
them seems to work for all of the applications. This is especially true for explicit
integration, where a small τ can result in mesh crossing and failures in integrations.
For implicit integration methods, changing τ can result in a new evaluation of the
Jacobian for the Newton iteration.

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 5

3. MMM using interpolation I: finite element approach

This section describes moving finite element algorithms proposed in [61, 62].
The moving finite element method proposed in [61] contains two independent parts:
a solution algorithm and a mesh selection algorithm. These two parts are indepen-
dent in the sense that the change of the PDEs will affect the first part only, which
is different with most of the interpolation-free moving mesh methods. The algo-
rithm proposed in [61] keeps the advantages of the moving mesh method (e.g.,
keep the number of nodes unchanged) and of the h-method (e.g., the two parts
in the code are independent of each other). The simplicity and reliability of this
approach were demonstrated by a number of numerical examples in two and three
space dimensions, as to be reported in Section 5.

To completely specify the coordinate transformation, the moving mesh meth-
ods must be supplemented with suitable boundary conditions. In theory, as pointed
out in [19, 22], there are a number of ways to redistribute the mesh points on the
boundary, such as using homogeneous Neumann boundary conditions, extrapolat-
ing the interior mesh points to the boundary, and relocating the mesh points by
solving a lower-dimensional moving-mesh PDE. However, these methods seem quite
inefficient if 3D problems are being considered. In [62], we presented a moving mesh
method, which is based on the minimization of the mesh energy, for solving prob-
lems in two and three space dimensions. In the mesh-restructuring step, we solve
an optimization problem with some appropriate constraints, which is in contrast to
the traditional method of solving the Euler-Lagrange equation directly. The key
idea of this approach is to treat the interior and boundary grids as a whole, rather
than considering them separately. Therefore, the new solution algorithm also pro-
vides an alternative boundary grid re-distribution technique, which turns out to be
useful in solving 3D problems. We point out that there are other mesh movement
approaches that can deal with boundary and interior points in a unified manner.
For example, to solve variational problems the approach by Tourigny & Hülsemann
[97] is dimension independent.

3.1. Harmonic mapping. Let Ω and Ωc be compact Riemannian manifolds

of dimension n with metric tensors dij and rαβ in some local coordinates ~x and ~ξ,
respectively. Following Dvinsky [36] and Brackbill [19], we define the energy for a

map ~ξ = ~ξ(~x) as

(3.1) E(~ξ) =
1

2

∫ √
d dijrαβ

∂ξα

∂xi

∂ξβ

∂xj
d~x ,

where d = det(dij), (dij) = (dij)−1, and the standard summation convention is as-
sumed. The Euler-Lagrange equations, whose solution minimizes the above energy,
with an Euclidean metric are given by

(3.2)
∂

∂xi

√
d dij ∂ξ

k

∂xj
= 0 .

We emphasize that d = det(dij) = 1/ det(dij). For ease of notation, we let Gij =√
d dij . The inverse of (Gij) is called monitor functions. Therefore, the Euler-

Lagrange equations, with Euclidean metric for the logical domain Ωc, are given

6 TAO TANG

by

(3.3)
∂

∂xi

(
Gij ∂ξ

k

∂xj

)
= 0,

and the corresponding mesh energy is of the form

(3.4) E(~ξ) =
∑

k

∫

Ω

Gij ∂ξ
k

∂xi

∂ξk

∂xj
d~x .

Solutions to (3.3) are harmonic functions giving a continuous, one-to-one mapping
with continuous inverse, which is differentiable and has a non-zero Jacobian. A
detailed description for solving (3.3), as well as how to interchange its dependent
and independent variables, can be found in Li et. al. [57, 61].

In [36], Dvinsky suggests that harmonic function theory may provide a general
framework for developing useful mesh generators. A good feature of the adap-
tive methods based on harmonic mapping is that existence, uniqueness and non-
singularity for the continuous map can be guaranteed from the theory of harmonic
maps: The existence and uniqueness of harmonic maps are established by Hamilton
[43] and Schoen & Yau [84].

3.2. The moving mesh algorithm. In [62], a moving finite element method
is proposed, which re-distributes the interior and boundary grids simultaneously.
For simplicity, assume that the domain Ω is a polyhedron. Let Γi and Γc,i denote
the corresponding edges of Ω and Ωc, respectively. The geometrical constraint to
the boundary grid movement is to keep the geometrical character of the physical
domain unchanged. This implies that the vertices (edges) of the physical domain
will be mapped to the corresponding vertices (edges) of the computational domain.
Therefore, it is reasonable to consider the following mapping set from ∂Ω to ∂Ωc,

K = {ξb ∈ C0(∂Ω)
∣∣∣ ξb : ∂Ω→ ∂Ωc ;(3.5)

ξb|Γi
is a linear segment and strictly increasing.}

One example of such a map is illustrated in Fig. 1. It follows from the theory
of Eell & Sampson [38] that for every ξb ∈ K there exists a unique ξ : Ω → Ωc,
such that ξ|∂Ω = ξb and ξ is the extreme of the functional (3.4). Let us denote the
mapping as ξ = P (ξb), and consider the optimization problem

(3.6)
min E(P (ξb))
s.t. ξb ∈ K

where the functional E is defined by (3.4). Since E is convex and P is linear, it
is shown in [62] that E(P (·)) is a convex functional. Therefore, the optimization
problem (3.6) has a unique solution in a closed subset of K.

Based on the above discussion, we will solve the following constrained opti-
mization problem:

(3.7)
min

∑

k

∫

Ω

Gij ∂ξ
k

∂xi

∂ξk

∂xj
d~x

s.t. ξ|∂Ω = ξb ∈ K .

Note that the boundary values ξb are not fixed, instead they are unknowns in the
same way as the interior points. This is one of the main differences between the
present approach and the one proposed in [61] where a Dirichlet problem is solved

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 7

Ω

Ω
c

Figure 1. A map between ∂Ω and ∂Ωc.

for ξ. By solving the above problem, the meshes on the logical domain will be
obtained at each iteration. The difference between the initial (fixed) mesh and
the updated mesh in the logical domain will yield the grid re-distribution for both
the interior and boundary grids (based on the formula (3.19) to be given in the
next subsection). One advantage of this approach is that the overall moving mesh
scheme can be easily implemented for 3D problems.

Once the initial mesh (in the logical domain) is given, it will be kept unchanged

throughout the computation. This initial mesh in Ωc, denoted by ~ξ(0), is used as
a reference grid only. After the solution u is computed at time level t = tn, the
inverse matrix of the monitor, Gij (which in general depends on u), can be updated.

By solving (3.7), we will obtain a mesh in the logical domain, denoted by ~ξ∗. If the

difference between this ~ξ∗ and the initial mesh ~ξ(0) is not small, we move the mesh
in the physical space to obtain the updated values for u in the resulting new grid.
This idea leads to the following algorithm.

ALGORITHM 1: Mesh-redistribution algorithm

• (a): solve the optimization problem (3.7) and compute the L∞-difference
between the solution of (3.7) and the fixed (initial) mesh in the logical
domain. If the difference is smaller than a preassigned tolerance, then the
mesh-redistribution at the given time level is complete. Otherwise, do

• (b): obtain the direction and the magnitude of the movement for ~x by
using the difference obtained in part (a), see (3.18) in Sect. 3.3, and then
move the mesh based on (3.19);

• (c): update ~u on the new grid by solving a system of ODEs, see (3.25) in
Sect. 3.3;

• (d): update the monitor function by using ~u obtained in part (c), and go
to part (a).

In part (a), a preassigned tolerance TOL is chosen so that the iteration is stopped
when

(3.8) ‖ξ∗ − ξ(0)‖L∞ ≤ TOL .

8 TAO TANG

The iteration above determines progressively better locations of the mesh grids in
the physical domain. Typically about one to two iterations are required. The parts
(b) and (c) above have been discussed in detail in Li et. al. [61]. We refer the
reader to that paper for the algorithm details, although some necessary details will
be mentioned in the next subsection.

After the interior and boundary grid points are well re-distributed based on
the solution at t = tn, we can use some appropriate numerical methods to solve the
underlying PDEs at t = tn+1 on the updated mesh in the physical space.

3.3. Mesh-redistribution and solution-updating. This subsection is to
give some necessary details for Algorithm 1, the mesh-redistribution algorithm.
Let us discretize the optimization problem (3.7) in the linear finite element space.
The triangulation of the physical domain is T , with Ti as its elements, and Xi as its
nodes. The corresponding triangulation on the computational domain is Tc, with
Ti,c as its elements, and Ai as its nodes. The linear finite element space on the mesh
is denoted as H1

h(Ω). If the basis function on node Xi is denoted by φi, then ξ can
be approximated by ξiφ

i (here the standard summation convention is assumed).
The coordinates of Xi are (X1

i X2
i)T . Let the inner nodes be indexed from 1 to

Ninner and the boundary nodes be indexed from Ninner +1 to N . The coordinates
of the nodes Ai in the computational domain are denoted as (A1

i A2
i)

T . Denote
X = (X1 X2)T , A = (A1 A2)T , where Xk = (Xk

1 · · · Xk
N)T , Ak = (Ak

1 · · · Ak
N)T ,

k = 1, 2. The objective function in (3.7) is approximated by

(3.9)
∑

k

∫

Ω

Gij ∂φ
α

∂xi

∂φβ

∂xj
d~x ξk

αξ
k
β .

As for the boundary points, we recall the assumption that ξ map a boundary (linear)
segment L on ∂Ω to a linear segment Lc on ∂Ωc. This gives that

(3.10) < Ai,n
i >= bi

where <> denotes the standard inner product, ni is the normal direction of a fixed
segment of the boundary of Ωc and bi is a given number. Since each Xi ∈ Γi is
mapped to a known segment of Γi,c, the relevant ni and bi are determined.

3.3.1. Mesh-redistribution. We now discuss the part (b) of Algorithm 1. First
a linear system for A will be formed to determine the motion of the computational
grids. Denote

(3.11) H =

(∫

Ω

Gij ∂φ
α

∂xi

∂φβ

∂xj
d~x

)

1≤α,β≤N.

We further split the matrix H into the following form:

H =

(
H11 H12

H21 H22

)
← 1 to Ninner row
← Ninner + 1 to N row

↑ ↑
1 to Ninner column Ninner + 1 to N column

Correspondingly, we use Ainner and Abound to denote the interior and boundary
part of the node coordinates, respectively. Then the objective function is given by

(3.12)
(
A1,T A2,T

) (
H 0
0 H

) (
A1

A2

)
.

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 9

Recall the earlier assumption that ξ maps a (linear) boundary segment L on ∂Ω to
a linear segment Lc on ∂Ωc. This assumption leads to the following linear system

(3.13)
(

0 A12 0 A22

)




A1
inner

A1
bound

A2
inner

A2
bound


 = ~b ,

where the matrices A12 and A22, based on (3.10), are the entries of the unit normal
of the boundary segments.

With the above preparation, the optimization problem (3.7) is equivalent to
solving the following linear system:

(3.14)




H11 H12 0 0 0
H21 H22 0 0 A′

12

0 0 H11 H12 0
0 0 H21 H22 A′

22

0 A12 0 A22 0







A1
inner

A1
bound

A2
inner

A2
bound

λ




=




0
0
0
0
~b




where λ is the Lagrange multiplier. As the number of points in the computa-
tional domain increases, solving the above system efficiently becomes crucial. In
our computations, two methods were tested: the first one uses BiCG with an LU
preconditioner to solve the system (3.14), and the second one is somehow more
efficient but not an exact method. Here we briefly outline the idea of the second
method. It is to decouple the above system to the following forms:

(3.15)




H22 0 A′

12

0 H22 A′
22

A12 A22 0








A1

bound

A2
bound

λ



 =




−H21A1

inner

−H21A2
inner

~b





and

(3.16)

(
H11 0
0 H11

) (
A1

inner

A2
inner

)
= −

(
H12A1

bound

H12A2
bound

)
.

The system (3.15) is small and is solved efficiently by using BiCG and GMRES. The
system (3.16) is symmetric and positive definite and is solved by using a multigrid
solver. Since the accuracy of the system is not very crucial (the solution of the
system (3.14) is for the location of mesh but not for the physical solution), a non-
exact but efficient algorithm is more useful. Therefore, we prefer to use the second
method in obtaining the approximate solutions of the system (3.14).

After obtaining the solution of (3.14), we can obtain a new logical mesh T ∗
c

with nodes A∗. For a given element E in T , with XEk
, 0 ≤ k ≤ 2 as its vertices,

the piecewise linear map from VT ∗

c
(Ωc) to VT (Ω) has constant gradient on E and

satisfies the following linear system

(
A∗,1

E1
−A∗,1

E0
A∗,1

E2
−A∗,1

E0

A∗,2
E1
−A∗,2

E0
A∗,2

E2
−A∗,2

E0

)



∂x1

∂ξ1
∂x1

∂ξ2

∂x2

∂ξ1
∂x2

∂ξ2




=

(
X1

E1
−X1

E0
X1

E2
−X1

E0

X2
E1
−X2

E0
X2

E2
−X2

E0

)
.(3.17)

10 TAO TANG

X
1

X
2

X
3

X
1
*

X
2
*

X
3
*

Figure 2. A demonstration of the element motion.

Solving (3.17) gives ∂~x/∂ξ in E. If we take the volume of the element as the weight,
the weighted average error of X at the i-th node is defined by

(3.18) δXi =

∑

E∈Ti

|E| ∂~x
∂ξ

∣∣∣∣
in E

δAi

∑

E∈Ti

|E|

where |E| is the volume of the element E, and δA = A(0) − A∗ is the difference
between the fixed mesh Tc (with nodes A(0)) and the logical mesh T ∗

c (with nodes
A∗). It can be shown that the above volume weighted average converges to a
smooth solution in measure when the size of mesh goes to 0. The location of the
nodes in the new mesh T ∗ on the physical domain is taken as

(3.19) X∗ = X + τδX

where τ is a parameter in [0, 1] and is used to prevent mesh tangling. Some possible
choices for τ can be found in [61, 62]. The motion of one element based on (3.19)
is illustrated in Fig. 2.

3.3.2. Solution-updating. After the mesh-redistribution in the physical domain
Ω, we need to update the solution ~u on the new mesh. Each element of T with
X as its nodes corresponds uniquely to an element of T ∗(τ) with X + τδX as its
nodes. There is also an affine map between the two elements. By combining all
those affine maps from each element of T ∗(τ) to T , we obtain a map from Ωc to
Ω piecewise affine. The surface of ~u on Ω will not move, though the nodes of the
mesh may be moved to new locations. Then ~u, as the function of ~x at time tn, is
independent of the parameter τ . That is

(3.20)
∂~u

∂τ
= 0 .

During the mesh redistribution, ~u is expressed as ~u = ~u(~x, τ). In the finite element
space, ~u is expressed as

(3.21) ~u = Ui(τ)Φ
i(~x, τ)

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 11

where Φi(~x, τ) is the basis function of the finite element space at its node Xi+τδXi.
Direct computation gives

(3.22)
∂Φi(~x, τ)

∂τ
= −∂Φi(~x, τ)

∂xj
(δ~x)j ,

where δ~x := δXiΦ
i. Differentiating ~u with respect to τ gives

0 =
∂~u

∂τ
=

∂Ui

∂τ
Φi(~x, τ) + Ui(τ)

∂Φi

∂τ

=
∂Ui

∂τ
Φi(~x, τ)− Ui(τ)

∂Φi

∂xj
(δ~x)j .(3.23)

Using the expression for ~u in the finite element space, i.e. (3.21), we obtain from
the above result that

(3.24)
∂Ui

∂τ
Φi(~x, τ) −∇~x~uδ~x = 0 .

Then a semi-discrete system for updating ~u follows from the above result.
∫

Ω

{
∂Ui

∂τ
Φi(~x, τ)−∇~x~uδ~x

}
vd~x = 0 ∀v ∈ VT (Ω) .

By letting v be the basis function of VT (Ω), i.e. v = Φj(~x, τ), we obtain a system
of (linear) ODEs for Ui:

(3.25)

∫

Ω

ΦiΦjd~x
∂Ui

∂τ
=

∫

Ω

∂Φi

∂xk
(δ~x)kΦjd~xUi(τ) , 1 ≤ j ≤ N.

The above ODE system can be solved by a 3-stage Runge-Kutta scheme. This
procedure, based on the fact that the surface of ~u in Ω is unchanged, provides a
solution-updating formula.

The above numerical procedure has now been extended to solve several classes
of problems such as the incompressible Navier-Stokes equations [32], incompress-
ible interface problems [31], and elliptic optimal control problems [59]. One of
the primary features of the numerical scheme is that the mesh redistribution part
and the PDE evolution part are separated. As a result, the whole moving mesh
algorithm can be packed in a black box which requires the following inputs: the
current numerical solution of the underlying PDEs, the algorithm for solving the
mesh PDEs, and an interpolation algorithm. Such a black box has been im-
plemented in the adaptive finite element package AFEPack which is available at
http://circus.math.pku.edu.cn/AFEPack, see also [58].

4. MMM using interpolation II: finite volume approach

4.1. 1D Algorithm. Let x and ξ denote the physical and computational co-
ordinates, respectively, which are (without loss of generality) assumed to be in [a, b]
and [0, 1], respectively. A one–to–one coordinate transformation between these do-
mains is denoted by

(4.1)
x = x(ξ), ξ ∈ [0, 1],
x(0) = a, x(1) = b.

The 1D Euler-Lagrange equation has the form

(4.2) (ω−1ξx)x = 0.

12 TAO TANG

Using the above equation we can obtain the conventional 1D equidistribution prin-

ciple: ωxξ=constant or equivalently

(4.3) (ωxξ)ξ = 0.

Both equations (4.2) and (4.3) have the same form and therefore solving any one
of them will end up with the desired mesh map x = x(ξ). However, the situation is
different in the 2D case where we will choose to solve equations of the form (4.3),
as will be described in the next subsection.

Our solution procedure is based on two independent parts: a mesh-redistribution
algorithm and a solution algorithm. The first part will be based on an iteration
procedure using (4.3) for mesh-motion and (4.5) below for solution updating. The
second part will be independent of the first one, and it can be any of the standard
codes for solving the given PDEs. The solution procedure can be illustrated by the
following flowchart:

ALGORITHM 2: 1D finite-volume moving mesh algorithm.

Step 1: Given a uniform (fixed) partition of the logical domain Ωc, use the

equidistribution principle (4.3) to generate an initial partition x
[0]
j := xj

of the physical domain Ωp. Then compute the grid values u
[0]

j+ 1
2

based on

the cell average for the initial data u(x, 0).

Step 2: Move grid {x[ν]
j } to {x[ν+1]

j } by solving (4.3) numerically, say with

one or more Gauss-Seidel iterations. Then compute {u[ν+1]

j+ 1
2

} on the new

grid based on the interpolation formula (4.5) to be given below. Repeat
the updating procedure for a fixed number of iterations or until ‖x[ν+1]−
x[ν]‖ ≤ ε.

Step 3: Evolve the underlying PDEs using a high-resolution finite volume

method on the mesh {x[ν+1]
j } to obtain the numerical approximations

un+1
j+ 1

2

at the time level tn+1.

Step 4: If tn+1 ≤ T , then let u
[0]

j+ 1
2

:= un+1
j+ 1

2

and x
[0]
j := x

[ν+1]
j and go to

Step 2.

After obtaining the new grid {x̃j}, we need to update u at the grid point
x̃j+ 1

2
= (x̃j + x̃j+1)/2 based on the knowledge of {xj+ 1

2
, x̃j+ 1

2
, uj+ 1

2
}. In [95], a

conservative second-order interpolation formula is introduced to update u on the
new grid. Below we will briefly derive it using the classical perturbation method.
Assume the difference between x̃j+ 1

2
and xj+ 1

2
is small. Let ũj+ 1

2
and uj+ 1

2
be cell

averages of the solution u(x) over the intervals [x̃j , x̃j+1] and [xj , xj+1], respectively.
If x̃ = x− c(x) with a small displacement c(x), i.e. |c(x)| � 1, then we have

∫ exj+1

exj

ũ(x̃) dx̃ =

∫ xj+1

xj

u(x− c(x))(1 − c′(x)) dx(4.4)

≈
∫ xj+1

xj

(u(x) − c(x)ux(x))(1 − c′(x)) dx ≈
∫ xj+1

xj

(u(x)− (cu)x) dx

=

∫ xj+1

xj

u(x) dx− ((cu)j+1 − (cu)j)

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 13

-

6

�
�	
x

y

z

-

6η

ξdomain Ω
x(ξ, η), y(ξ, η)

mapping

surface z=f(x, y)

�

~

Figure 3. The coordinates on the surface of a function z=f(x, y).

where we have neglected higher order terms, and (cu)j denotes the value of cu
at the j-th cell interface. The following conservative-interpolation formula follows
from (4.4):

(4.5) ∆x̃j+ 1
2
ũj+ 1

2
= ∆xj+ 1

2
uj+ 1

2
−

(
(cu)j+1 − (cu)j

)
,

where ∆x̃j+ 1
2

= x̃j+1− x̃j and cj = xj− x̃j . Note that the above solution-updating

method guarantees the conservation of mass in the following sense:

(4.6)
∑

j

∆x̃j+ 1
2
ũj+ 1

2
=

∑

j

∆xj+ 1
2
uj+ 1

2
.

The linear flux cu in (4.5) will be approximated by some upwinding numerical flux,
see [95].

In 1D, it can be shown that the underlying numerical approximation obtained
in the mesh-redistribution part satisfies the desired TVD property [95], which guar-
antees that the numerical solution at any time level is TVD provided that the PDE
solver in the first part satisfies such a property.

4.2. 2D Algorithm. One of the advantages of the adaptive mesh methods
described in the last section is that they can be naturally extended to 2D. In the
following, we briefly discuss this extension. We begin by extending the conservative-
interpolation formula (4.5). In two dimensions, the coordinates and mapping rela-
tionships are shown in Fig. 3. Without loss of generality, assume the logical domain
Ω̄c = {(ξ, η)|0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1} is covered by the square mesh:

{
(ξj , ηk)

∣∣∣ ξj = j/(Jx + 1), ηk = k/(Jy + 1); 0 ≤ j ≤ Jx + 1, 0 ≤ k ≤ Jy + 1
}
.

The numerical approximations to x = x(ξ, η) and y = y(ξ, η) are denoted by

xj,k = x(ξj , ηk) and yj,k = y(ξj , ηk), respectively. Let Aj+ 1
2

,k+ 1
2

and Ãj+ 1
2

,k+ 1
2

be control volumes with four vertices (xj+p,k+q , yj+p,k+q) and (x̃j+p,k+q , ỹj+p,k+q),
0 ≤ p, q ≤ 1, respectively. Assume that ũj+ 1

2
,k+ 1

2
and uj+ 1

2
,k+ 1

2
are cell averages

14 TAO TANG

of u(x, , y) over Ãj+ 1
2
,k+ 1

2
and Aj+ 1

2
,k+ 1

2
, respectively. As in the 1D case, we use

the perturbation method to evaluate the numerical approximation on the resulting
new grids (x̃j,k, ỹj,k). If (x̃, ỹ) = (x − cx(x, y), y − cy(x, y)) where we assume the
speeds (cx, cy) have small amplitude, then it can be shown

∫

eA
j+ 1

2
,k+1

2

ũ(x̃, ỹ) dx̃dỹ ≈
∫

A
j+ 1

2
,k+ 1

2

u(x, y) dxdy(4.7)

−
[
(cnu)j+1,k+ 1

2
+ (cnu)j,k+ 1

2

]
−

[
(cnu)j+ 1

2
,k+1 + (cnu)j+ 1

2
,k

]
,

where we have neglected higher order terms, cn := cxnx + cyny with (nx, ny) the
unit normal, and (cnu)j,k+ 1

2
and (cnu)j+ 1

2
,k denote the values of cnu at the cor-

responding surfaces of the control volume Aj+ 1
2
,k+ 1

2
. From (4.7), we obtain a

conservative-interpolation:

|Ãj+ 1
2

,k+ 1
2
|ũj+ 1

2
,k+ 1

2
= |Aj+ 1

2
,k+ 1

2
|uj+ 1

2
,k+ 1

2

−
[
(cnu)j+1,k+ 1

2
+ (cnu)j,k+ 1

2

]
−

[
(cnu)j+ 1

2
,k+1 + (cnu)j+ 1

2
,k

]
,(4.8)

where |Ã| and |A| denote the areas of the control volumes Ã and A, respectively. It
can be verified that the above solution-updating scheme satisfies mass-conservation:

(4.9)
∑

j,k

|Ãj+ 1
2
,k+ 1

2
|ũj+ 1

2
,k+ 1

2
=

∑

j,k

|Aj+ 1
2
,k+ 1

2
|uj+ 1

2
,k+ 1

2
.

The solution procedure of our adaptive mesh strategy for two-dimensional hyper-
bolic problems is almost the same as ALGORITHM 2 provided in Section 4.1. Some
details of the steps used for our 2D algorithm are given below.

ALGORITHM 3: 2D finite-volume moving mesh algorithm.

Step i: Give an initial partition ~z
[0]
j,k =

(
x

[0]
j,k, y

[0]
j,k

)
:= (xj,k, yj,k) of the phys-

ical domain Ωp and a uniform (fixed) partition of the logical domain

Ωc, and compute grid values u
[0]

j+ 1
2
,k+ 1

2

by cell averaging the initial data

u(x, y, 0) over the control volume Aj+ 1
2

,k+ 1
2
.

Step ii: For ν = 0, 1, 2, . . . , do the following:

(a). Move grid ~z
[ν]
j,k = {(x[ν]

j,k, y
[ν]
j,k)} to ~z

[ν+1]
j,k = {(x[ν+1]

j,k , y
[ν+1]
j,k)} by

solving ~zτ = (ω~zξ)ξ + (ω~zη)η with the conventional explicit scheme. This
step can be also done by solving (ω~zξ)ξ + (ω~zη)η = 0 with the following
Gauss-Seidel iteration:

αj+ 1
2
,k

(
~z
[ν]
j+1,k − ~z

[ν+1]
j,k

)
− αj− 1

2
,k

(
~z

[ν+1]
j,k − ~z[ν+1]

j−1,k

)

+βj,k+ 1
2

(
~z

[ν]
j,k+1 − ~z

[ν+1]
j,k

)
− βj,k− 1

2

(
~z
[ν+1]
j,k − ~z[ν+1]

j,k−1

)
= 0,

for 1 ≤ j ≤ Jx and 1 ≤ k ≤ Jy, where

αj± 1
2
,k = ω

(
u

[ν]

j± 1
2

,k

)
= ω

(
1
2 (u

[ν]

j± 1
2
,k+ 1

2

+ u
[ν]

j± 1
2
,k− 1

2

)
)
,

βj,k± 1
2

= ω
(
u

[ν]

j,k± 1
2

)
= ω

(
1
2 (u

[ν]

j+ 1
2
,k± 1

2

+ u
[ν]

j− 1
2

,k± 1
2

)
)
.

(b). Compute {u[ν+1]

j+ 1
2
,k+ 1

2

} on the new grid using the conservative-

interpolation (4.8). The approximations for cx, cy etc are direct extensions
of those defined for the 1D case.

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 15

(c). Repeat the updating procedure (a) and (b) for a fixed number of
iterations (say, 3 or 5) or until ‖~z[ν+1] − ~z[ν]‖ ≤ ε.

Step iii: Evolve the underlying PDEs using 2D high-resolution finite volume

methods on the mesh {(x[ν+1]
j,k , y

[ν+1]
j,k)} to obtain the numerical approxi-

mations un+1
j+ 1

2
,k+ 1

2

at the time level tn+1.

Step iv: If tn+1 ≤ T , then let u
[0]

j+ 1
2
,k+ 1

2

:= un+1
j+ 1

2
,k+ 1

2

and (x
[0]
j,k, y

[0]
j,k) :=

(x
[ν+1]
j,k , y

[ν+1]
j,k), and go to Step ii.

The above numerical procedures have now been extended to solve several classes
of problems such as the nonlinear Hamilton-Jacobi equations [96], convection-
dominated problems [107, 108], phase-field equations [92]. Recently, Zegeling
solved the resistive MHD models [105] and van Dam simulated the traffic flow
models [98] using a similar approach as described in this section.

5. Application I: incompressible flow simulations

5.1. Navier-Stokes equations. There have been some efforts in solving the
incompressible Navier-Stokes (NS) problems using the moving grid methods, see,
e.g., [86, 22], but most of these works solve the NS equations in the streamfunction-
vorticity formulation. In this subsection, we describe the work of [32] which presents
the first effort in designing moving mesh algorithm to solve the incompressible NS
equations in the primitive variables formulation. The proposed numerical scheme
extends the framework presented in Section 3. The main difficulty in developing
this moving mesh scheme is how to keep the divergence-free property for the velocity
field at each time level. By some careful analysis, we conclude that this can be done
by solving a linearized inviscid Navier-Stokes-type equations.

We consider a two-dimensional incompressible Navier-Stokes equations in prim-
itive variables formulation

(5.1)

{
∂tu + u · ∇u = −∇p+ ν∆u, in Ω

∇ · u = 0, in Ω

where u = (u, v) is the fluid velocity vector, p is the pressure, and ν is the kinematic
viscosity. Without loss of generality, let Ω be the unit square (0, 1) × (0, 1). For
ease of illustration, we consider a well-known periodic double shear-layer problem
so a periodic boundary condition is assumed:

u(x, 0; t) = u(x, 1; t), u(0, y; t) = u(1, y; t),(5.2a)

∂nu(x, 0; t) = ∂nu(x, 1; t), ∂nu(0, y; t) = ∂nu(1, y; t),(5.2b)

p(x, 0; t) = p(x, 1; t), p(0, y; t) = p(1, y; t).(5.2c)

Denote

V = H1(Ω)2 ∩ {v | v satisfies (5.2a)− (5.2b)}
P = L2

0(Ω) ∩ {q | q satisfies (5.2c)}.
The classical variational formulation for the NS equations (5.1) reads: Find a pair
(u, p) in V × P such that

(5.3)

{
(∂tu,v) + (u · ∇u,v) = (p,∇ · v)− ν(∇u,∇v) ∀v ∈ V,

(q,∇ · u) = 0 ∀q ∈ P.

16 TAO TANG

Assume the domain Ω is triangulated into a triangle mesh Th, and the elements of
the triangulation are denoted as κ. Let Vh and Ph be two finite element spaces
with triangulation parameter h such that

Vh ⊂ V, Ph ⊂ P.

Then (5.3) can be approximated as: Find a pair (uh, ph) ∈ Vh × Ph such that
(5.4){

(∂tuh,vh) + (uh · ∇uh,vh) = (ph,∇vh)− ν(∇uh,∇vh) ∀vh ∈ Vh ,
(qh,∇ · uh) = 0 ∀qh ∈ Ph .

Denote the subspace of H1(Ω) satisfying the periodic boundary condition as V ,
which is a component of space V. Each velocity component is then approximated
piecewise linearly on every triangle element, which forms a continuous finite element

space Vh ⊂ V . Denote Vh = (Vh)
2
. This is an order-one approximation for the

velocity. For the pressure p, we adopt the piecewise constant finite element space
Ph ⊂ P on the dual mesh of Th. In the temporal direction, a 3-step Runge-Kutta
scheme is used to solve (5.4).

5.1.1. Divergence-free interpolation. It is demonstrated in [32] that a divergence-
free-preserving interpolation scheme can be obtained by solving a simple convection
equation whose convection speed is the same as the mesh-moving speed. Assume
that a finite element solution uh in a finite element space Wh is uh = uiφ

i, where
the standard summation convention used, and φi is the basis function of Wh. We
introduce a virtual time variable τ , and assume that in the mesh-moving process
the basis function φi and the point-wise value ui both depend on the virtual time
variable τ , i.e. φi = φi(~x, τ), ui = ui(τ). To be more precise, we introduce a
continuous transformation

(5.5) x(τ) = xold + τ(xnew − xold), τ ∈ [0, 1]

where xold and xnew are two sets of coordinates in the physical domain, which in

the discrete level satisfy xold
i = Xi and xnew

i = X∗
i . In particular, the change for

the discrete nodes is given by

(5.6) xi(τ) = Xi + τ(X∗
i −Xi), τ ∈ [0, 1].

With the linear transformation (5.5), the corresponding basis function and the
point-wise value can be defined by φi(τ) := φi(x(τ)) and ui(τ) := ui(x(τ)).

We assume the solution curve uh = φi(τ)ui(τ), τ ∈ [0, 1], is independent of τ ,
namely, it is unchanged in the mesh-moving process. This assumption leads to

(5.7) ∂τuh = 0.

By direct computation we obtain

(5.8)
∂φi

∂τ
= −∇~xφ

i · δ~x,

where δ~x := xold−xnew which is well-defined in the discrete level. It follows from
the above two equations that ∀ψ ∈Wh

(5.9) (∂τuh −∇~xuh · δ~x, ψ) = 0.

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 17

We now apply this formulation to the velocity field of an incompressible flow by
letting Wh be the divergence-free space

(5.10) Wh = Vh ∩ {uh | ∇ · uh = 0}.
Then the problem (5.9) becomes the following: Find wh ∈Wh such that

(5.11) (∂τwh −∇~xwh · δ~x, zh) = 0, ∀zh ∈Wh.

The above result implies that

(5.12) ∂τwh −∇~xwh · δ~x ∈Wh
⊥

where the right hand side of the above equation denotes the orthogonal space of
Wh in L2. It follows from Theorem 2.7 of [42] that if the solution domain Ω is
simply-connected then

(5.13) Wh
⊥ = {∇q | q ∈ H1(Ω)}.

Using the above two results, we can show that solving (5.11) is equivalent to finding
(uh, ph) ∈ Vh × Ph such that

(∂τuh −∇~xuh · δ~x,vh) = (ph,∇vh), ∀vh ∈ Vh(5.14a)

(∇~x · u, qh) = 0, ∀qh ∈ Ph.(5.14b)

A 3-step Runge-Kutta scheme is applied to the temporal discretization of (5.14),
see [32]. In our computations, the virtual time step ∆τ is taken as 1. In other
words, we only use one marching step to realize the solution re-distribution. The
reason allowing the large time step is due to the fact that the convection speed in
(5.14), namely δ~x, is very small. The speed for most of nodes is as small as O(h).

5.1.2. Monitor functions. There are several possible choices of the monitor
function for the incompressible Navier-Stokes approximations, including those based
on vorticity (see, e.g., [22]) and density gradient (see, e.g., [25]).

For a piecewise linear approximation vh to a function v, the following formal
a posteriori formula is adopted to approximate the computational error, see, e.g.
[80]:

|v − vh|1,Ω v η(vh) :=

√ ∑

l: interior edge

∫

l

[∇vh · nl]|l
2
dl

where [·]|l denotes the jump along the edge l: [v]|l = v|l− − v|l+ . It is natural to
equally redistribute the numerical errors η(vh) in each element, which can be done
by choosing the monitor function G as

(5.15) G2(vh) =
√

1 + αη2(vh).

It is found in the numerical computations that the error η is very small in most
parts of the solution domain, which makes the choice of the parameter α difficult.
To overcome this difficulty, we introduce a scaling and a larger power β > 2 in the
monitor:

(5.16) G3(vh) =

√
1 + α

[
η(vh)/max η(vh)

]β

.

The above monitor has been found appropriate in our numerical experiments.

18 TAO TANG

(a) (b)

(c) (d)

Figure 4. Example 5.1: vorticity contours at t = 0.8 obtained
by using moving mesh methods with resolution (b): 80 × 80, (c):
100× 100, and (d): 160× 160. A 160× 160 static-mesh solution is
included in (a).

5.1.3. Numerical experiments.

Example 5.1. Consider a double shear layer governed by the Navier-Stokes

equations (5.1), in a unit 1-periodic domain, subject to the initial conditions:

(5.17)
u0(x, y) =

{
tanh(ρ(y − 0.25)) for y ≤ 0.5;
tanh(ρ(0.75− y)) for y > 0.5;

v0(x, y) = δ sin(2πx).

This problem is a canonical test problem for a scheme’s accuracy and resolution
in incompressible flows. Brown & Minion [20] performed for this problem a system-
atic comparison between a number of schemes, concentrating on the effect of under-
resolution. They demonstrated that a Godunov-projection method performs as well
as an accurate central difference method in cases where the smallest flow scales are
well resolved. However, in underresolved cases where centered methods compute so-
lutions badly polluted with mesh-scale oscillations, the Godunov-projection method
sometimes gives smooth, apparently physical solutions. It is observed in [20] that
these underresolved solutions, although convergent when the grid is refined, contain
spurious nonphysical vortices that are artifacts of the underresolution.

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 19

X

Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 5. Example 5.1. Thin shear layer problem: the mesh at
t = 0.8 with a 100× 100-mesh.

In (5.17), the parameter ρ determines the slope of the shear layer, and δ rep-
resents the size of the perturbation. The initial layer rolls up in time into strong
vortical structures. In [32], the perturbation size used is δ = 0.05, but the shear
layer width is varied to study the effect of the layer resolution on the computa-
tions. As in [20], the double layer shear is called a thick layer problem when ρ = 30
and ν = 10−4 and a thin layer problem when ρ = 100 and ν = 0.5 ∗ 10−4. It was
demonstrated in [20] that the thin layer problem is a challenging one: If the mesh is
not fine enough then spurious vortices will be generated in the numerical solutions.
It was concluded in [20] that with the second-order Godunov-projection methods
about 512× 512 cells have to be used in order to obtain reasonable resolutions.

In the thin-layer calculations, we tested the monitor functions (5.15) and (5.16).
Our goal is to use about 150×150 cells to resolve the thin-layer problem. However,
it is found that the monitor (5.15) does not perform well to achieve this goal, while
the monitor (5.16) works well. Three mesh resolutions are used: 80× 80, 100× 100
and the 160× 160. The parameters (α, β) in (5.16) used for the three meshes are
(5,2), (5,3), and (8,4), respectively.

Figure 4 shows vorticity contours at t = 0.8 computed with the moving-mesh
method on the three mesh resolutions. For comparison, a uniform mesh solution
with a 160 × 160-mesh is also included. It is clear that on the coarser grid the
appearance of the moving-mesh solution is significant from the finest-mesh reference
solutions given in [20]. The 80×80 moving mesh solution and the 160×160 uniform
mesh solution both give spurious vortices, developing additional roll-ups in the shear
layer. This is clearly the underresolution effect. However, when the mesh is refined,
the spurious vortices disappear and the numerical solutions converge to a double

20 TAO TANG

shear layer with a single roll-up, as shown in Figures 4 (c) and (d). The adaptive
grid with a 100×100-mesh is shown in Figure 5. It is observed that more grid points
have been clustered inside the shear layer and the roll-ups, where the solutions have
large solution variations.

5.2. Incompressible two-phase flows with moving mesh. In [31], a cou-
pled moving mesh and level set method for computing incompressible two-phase
flow with surface tension is presented. The level set approach of [76] and the
moving mesh method for incompressible flow simulations of [32] are combined to
compute incompressible two-phase flow with surface tension. The flow we consider
has discontinuous density and viscosity, and is characterized by large density and
viscosity ratios at the free surface, e.g. air and water. Our goal is to achieve higher
resolution of the free surface with a minimum of additional expense.

As an example, we compute the interaction of two fluid bubbles of the same
density under the influence of gravity. The fluid is set at rest initially. The viscosity
for the fluid inside and out the two bubbles is equal to µ = 0.00025 and 0.0005,
respectively. The surface tension is set to zero. The initial positions of the two
bubbles correspond to two circles, with the lower one centered at (0.5, 0.35) with
radius 0.1 and the upper one centered at (0.5, 0.65) with radius 0.15. We take the
density inside the two bubbles to be 1 and 10, respectively.

In Fig. 6, we plot the numerical solutions together with the corresponding
meshes at t = 0.3, 0.4 and 0.5, obtained by using a 802 grid. The desired effect of
the mesh adaptivity can be clearly seen in this figure. In [26], the level set method
together with a second-order projection scheme was used to study the merging of
two bubbles with the above parameters. The overall agreement between our coarse
mesh results and the fine mesh results of [26] is found very satisfactory.

6. Application II: hyperbolic conservation laws

There have existed several moving mesh methods for solving hyperbolic con-
servation laws. The earliest work in this direction may be due to Yanenko et al.
[102]. Harten & Hyman [44] proposed to move the grid at an adaptive speed in
each time step to improve the resolution of shocks and contact discontinuities. Af-
ter their works, many other moving mesh methods for hyperbolic problems have
been proposed in the literature, including Li & Petzold [63], Azarenok et al. [6, 7],
Stockie et al. [91], Lipnikov & Shashkov [67], Liu et al. [68] (for steady state Euler
flow calculations), and Tang & Tang [95, 93, 94]. Other moving mesh applications
include Pen [77] who solve cosmological astrophysical fluid problems.

6.1. Finite-volume approach.

Example 6.1. The double-Mach reflection problem. This problem was
studied extensively in Woodward & Colella [101] and later by many others. We use
exactly the same setup as in [101], i.e. the same initial and boundary conditions
and same solution domain Ωp = [0, 4]× [0, 1].

The above problem was computed using the moving mesh scheme described
in Section 4, see also [95]. As in [101], only the results in [0, 3] × [0, 1] are dis-
played. In Fig. 7, the adaptive meshes with (Jx, Jy) = (160, 40) and (320, 80)
are displayed, while the corresponding contours of density are displayed in Fig. 8.
By comparing the density plots, it is found the adaptive computation results with

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 21

Figure 6. Merging of two bubbles in moving 80×80 mesh: meshes
and solutions at t = 0.3, 0.4 and 0.5 (from top to bottom).

(Jx, Jy) = (320, 80) have similar resolution to the results obtained by the second-
order discontinuous Galerkin method with (Jx, Jy) = (960, 240) (p.214, [29]) and
by the second-order central scheme with (Jx, Jy) = (960, 240) (p.67, [29]).

22 TAO TANG

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

Figure 7. Example 6.1: 2D double Mach reflection at t = 0.2:
the contours of meshes. From top to bottom: (Jx, Jy) = (160, 40)
and (320, 80).

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Figure 8. Same as Fig. 7, except for density contours.

Example 6.2. Consider a spherical explosion between two parallel walls at
z=0 and z=1. Initially the gas is at rest with parameters (p, ρ)out=(1, 1) every-
where except in a sphere centered at (0, 0, 0.4) with radius 0.2. Inside the sphere
(p, ρ)in=(5, 1), γ=1.4. This problem was proposed by LeVeque [56].

The above problem was computed using the moving mesh scheme proposed in
[8]. The moving mesh method uses a second-order Godunov-type solver to solve
the hyperbolic system. The main strategies of this approach are two folds. First, a
second-order finite-volume flow solver is employed to update the flow parameters at
the new time level directly on the adaptive grid without using interpolation. This
PDE solver involves two level grids at tn and tn+1, so after mesh redistribution

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 23

certain number of iterations is needed. The conservation equations are formulated
and approximated on a time-dependent two-level grids. This is in contrast to
the approach used in [61, 95] where the PDE solver involves one level grid but
interpolation has to be used (see Section 4). Secondly, some optimization problem

is solved in order to obtain the mesh, similar to that described in Section 3. The
idea of this approach is to minimize some discrete Dirichlet’s functional possessing
the infinite barrier property, as suggested by Charakhch’yan & Ivanenko [27, 53].

For Example 6.2, the initial jump in pressure results in an outward moving
shock, a contact discontinuity and an inward moving rarefaction wave. There occurs
interactions among these waves and between the waves and the walls. The flow
by t=0.7 consists of several shocks and strong contact/(tangential) discontinuity
surrounding the low density region near the center. In Fig. 9 the adapted mesh
with a 100 × 140 grid is shown. To compare with the fixed mesh solution, the
pressure contours, computed on the 200 × 250 uniform and adapted meshes, are
presented in Fig. 10. We see that the shock thickness obtained by using the moving
mesh method is decreased significantly in comparison with the fixed mesh solution.
More computational results and computational details can be found in [8].

6.2. Reactive flow calculations on moving meshes. Numerical simula-
tion of reactive flow has been an important and active research direction. Numerical
efforts using adaptive grid methods can be found in Oran & Boris’ books [74, 75],
see also the work of Fortov et al. [39] and Geßner & Kröner [41].

In [9], the method of calculating the system of gas dynamics equations coupled
with the chemical reaction equation is considered. The flow parameters are updated
in whole without splitting the system into a hydrodynamical part and an ODE
part. The algorithm is based on the Godunov’s scheme on deformed meshes with
some modification to increase the scheme-order in time and space. To generate
the moving adaptive mesh the variational approach is applied. At each time step
the functional of smoothness, written on the graph of some control functions, is
minimized. The grid-lines are condensed in the vicinity of the solution singularity
and, thus, an adaptive mesh is generated. Strong grid-lines condensing allows
placing several cells into the burning zone and, thus, resolving a fine structure of
the reaction front, e.g. appearance of vortices.

The governing system of the differential equations relating to 2D reactive gas
flow is

(6.1)
∂σ

∂t
+
∂a

∂x
+
∂b

∂y
= c ,

where

σ = (ρ, ρu, ρv, E, ρZ)>, a = (ρu, ρu2+p, ρuv, u(E+p), ρuZ)>,

b = (ρv, ρuv, ρv2+p, v(E+p), ρvZ)>, c = (0, 0, 0, 0,−ρK(T)Z)>,

with u and v the velocity components, E = ρ[e + 0.5(u2 + v2)] + qoρZ the total
energy.

Solving the 1-D or 2-D gas dynamics equations with grid adaptation at each
time step contains the following stages:

ALGORITHM 4: Coupled algorithm for reactive flow

(i) Generate the mesh at the next time level tn+1.
(ii) Compute the gas dynamics values at time tn+1.

24 TAO TANG

Figure 9. Example 6.2: adapted mesh 100×140.

0.8125
0.8

12
5

0.8125

0.8500

0.8500

0.8500

0.8875
0.8

87
5

0.8875

0.8875

0.8875

0.
88

75

0.8875

0.9250 0.
92

50

0.9250

0.
92

50

0.
92

50
0.

92
50

0.9250

0.9250
0.9250

0.9250

0.9625

0.
96

25
0.9625

0.9625

0.9625

0.9625

0.
96

25

0.9625

0.9625

0.9625

1.0000

1.0000

1.
00

00

1.
00

00

1.
00

00

1.0000

1.0000

1.
00

00

1.0000

1.0000

1.0000

1.0000

1.
03

75

1.0375

1.0375

1.
03

75

1.0375

1.0375 1.0375
1.0375

1.0500

1.0375

1.0375

1.0375

1.
03

75

1.0375

1.
07

50

1.0750

1.
07

50

1.0750

1.0750

1.
07

50

1.0750

1.0750

1.0750

1.
07

50

1.
11

25

1.1125

1.
11

25

1.1125

1.1125

1.1125

1.
11

25

1.
11

25

1.1125

1.1125

1.
15

00

1.1500

1.1500

1.1500

1.1500

1.1500

1.1500

1.
15

00

1.1500
1.1500

1.1500

1.
18

75

1.1875

1.1875

1.1875

1.1875 1.1875
1.1875

1.1875

1.
18

75

1.2250

1.2250

1.2250

1.2625

1.2500

1.3000

1.
30

00
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.81250.8500

0.
85

00

0.
85

00

0.
85

00

0.8500

0.8500

0.8875

0.8875

0.
88

75

0.
88

75

0.8875

0.8875

0.8875

0.
88

75

0.9250 0.9250

0.9250

0.9
25

0
0.

92
50

0.9250

0.9250
0.9250

0.9250

0.9625

0.9625

0.9625

0.
96

25

0.
96

25

0.9625

0.9625

0.9625

0.9625

0.
96

25

0.9625

0.9625

1.0000

1.0000

1.0000

1.0000

1.
00

00

1.
00

00

1.0000

1.0000

1.0000

1.0000

1.0000

1.0125

1.0375

1.0375

1.
03

75

1.0375

1.0375

1.0375

1.0375

1.0375

1.
03

75

1.0375

1.0375

1.0375

1.
03

75

1.0750

1.0750

1.0750

1.0750

1.0750

1.
07

50

1.0750

1.0750

1.0750

1.
07

50

1.0750

1.
11

25

1.1125

1.1125

1.1125

1.1125

1.
11

25

1.1125

1.1125
1.1

12
5

1.1
50

0

1.1500

1.1500

1.1500

1.1500

1.
15

00

1.1500

1.15001.1500

1.1
87

5

1.1875

1.
18

75

1.
18

75

1.1875

1.
22

50

1.2250

1.2
25

0

1.2000

1.
30

00

1.3000

1.3000

1.3375

1.
33

75

1.4125

1.
41

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10. Example 6.2: pressure contours computed with a
200×250 uniform (top) and moving (bottom) meshes.

(iii) Make one iteration to compute the new grid coordinates (x, y)i at tn+1.
(iv) Repeat steps (ii) and (iii) using a given number of iterations.
(v) Compute the final gas dynamics values at tn+1.

It is pointed out that the above procedure does not require interpolation from
the old mesh solution to the new mesh solution. The reason is that the numerical

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 25

(a) (b)

Figure 11. Reactive flow computations: adapted mesh (a) and
close-up (b) at t=61.59.

scheme for obtaining the solution of 6.1 uses the meshes on levels tn and tn+1s by
utilizing the integral conservation laws in R3 space (x, y, t), see, e.g., [7, 8, 9].

We now present the results of modeling the 2D unsteady detonation, when
the cellular structure arises, as considered in [18]. In Fig. 11 the adapted mesh
at t=61.59 is presented. We draw only 120 front cells in the x-direction. We
observe that two main triple points are resolved by grid lines very accurately, see
the fragment of the mesh in Fig. 11b. The burning zone takes 7−8 cells, conversely
the shock wave, emanating from the triple points, takes only 3 cells. The thickness
of the detonation wave on the adapted mesh is significantly smaller than that on
the uniform mesh. The mesh also ”feels” the triple points, arising due to instability
in the solution. In Fig. 12 the pressure contours at t=61.59 are plotted, obtained on
the uniform and adapted meshes. It is observed in the vicinity of the triple points
the resolution is much higher with the adaptive grid, the difference can be better
seen by comparing Fig. 12c and Fig. 12d. The details of the above computations
can be found in [9].

6.3. Moving mesh discontinuous Galerkin method. In [60], a moving
mesh discontinuous Galerkin (DG) method is developed for solving the nonlinear
conservation laws. In the mesh adaptation part, two issues have received much
attention. One is about the construction of the monitor function which is used
to guide the mesh redistribution. In [60], a heuristic posteriori error estimator is
used in constructing the monitor function. The second issue is concerned with the
solution interpolation which is used to interpolates the numerical solution from the

26 TAO TANG

(a) (b)

(c) (d)

Figure 12. Reactive flow computations: pressure contours at
t=61.59 computed on the uniform (a) and adapted (b) mesh.
Close-up for the uniform (c) and adapted (d) mesh (domain, de-
picted in Fig 11b).

old mesh to the updated mesh. This is done by using a scheme that mimics the
DG method for linear conservation laws. Appropriate limiters are used on seriously
distorted meshes generated by the moving mesh approach to suppress the numerical
oscillations.

As a numerical example, the double Mach problem Example 6.1 is re-computed
using the moving mesh DG methods. We calculate this problem on 96 × 24 and
192 × 48 meshes to time t = 0.2. The mesh and density contours using the two
meshes are plotted in Figs. 13 and 14, respectively. The density contour is plotted

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 27

Figure 13. Double Mach reflection problem using moving mesh
DG method: Mesh and density contour obtained on a 96×24 grid.

Figure 14. Same as Fig. 13, except on a 192× 48 grid.

on [0, 3]× [0, 1]. It can be seen that the mesh grid points are clustered in the regions
where the shocks and the detailed structures are located.

7. Concluding remarks

In this article we have reviewed some recent efforts in computing CFD problems
with moving mesh methods. Due to limitation of space, it is impossible to give a
comprehensive review on this rapidly developing subject. In particular, we are
unable to include many important applications of the moving mesh methods, such
as computations for Schrödinger equations [81, 100, 24], for free-surface or moving

28 TAO TANG

boundary simulations [78, 90], for traffic flow simulations [98], and for phase-field
equations [14, 70].

Moving grid methods have been generally less developed and less well-known
than the other adaptive techniques. One possible reason for this is the lack of
firmer theoretical foundations. In the past decade, there have been some efforts in
understanding the theoretical backgrounds of the moving mesh methods, see, e.g.,
[89, 88, 79, 66, 13, 35, 69]. In particular, a clean uniform convergence rate is
established by Kopteva et al. [54, 55] for two-point value ODEs using moving mesh
methods with the arclength monitor. However, the extension to time-dependent
problems does not seem simple.

Most recently, it is realized that the meshes may be designed by analyzing the
interpolation error, see, e.g., [48, 52, 28]. The three key grid features or qualities
which play a role in determining the interpolation error (e.g., in a finite element
analysis setting) are (1) geometric quality in physical space, (2) alignment quality
in physical space or isotropy in computational space, and (3) adaptive quality or
level of equidistribution. From the way that terms representing these three features
arise in the interpolation error bound, it was shown that the latter two are the most
important [48, 52].

The following website contains some materials related to this work:

http://www.math.hkbu.edu.hk/∼ttang/MMmovie

We close this paper by quoting the following words from Oran & Boris (Nu-

merical Simulation of Reactive Flow, 2nd ed., Cambridge University Press, 2001;
p.183): “Adaptive griding techniques fall into two broad classes, adaptive mesh re-

distribution and adaptive mesh refinement, both contained in the acronym AMR.
Techniques for adaptive mesh redistribution continuously reposition a fixed number
of cells, and so they improve the resolution in particular locations of the computa-
tional domain. Techniques for adaptive mesh refinement add new cells as required
and delete other cells that are no longer required. Because the great potential of
AMR for reducing computational costs without reducing the overall level of accu-
racy, it is a forefront area in scientific computation”.

Acknowledgments. I wish to thank my collaborators Dr. R. Li, Prof. H.-Z.
Tang and Prof. Pingwen Zhang of Peking University, Dr. B. Azarenok of Russian
Academy of Sciences, and Prof. Wenbin Liu of the University of Kent. Special
thanks are due to my graduate students Z.-R. Zhang, Yana Di and Z.-J. Tan for
their contributions to this project. I would also like to acknowledge valuable com-
ments made by Arthur van Dam, Ruo Li, Paul Zegeling and Zhengru Zhang. The
research of the author was partially supported by Hong Kong Research Grants
Council (RGC HKBU2044/00P, 2083/01P, 2045/02P), Hong Kong Baptist Univer-
sity (FRG FRG/01-02/II-01, FRG/00-01/II-08, FRG/98-99/II-14), and Interna-
tional Research Team on Complex System, Chinese Academy of Sciences.

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 29

References

1. S. Adjerid and J. E. Flaherty, A moving FEM with error estimation and refinenment for
1-D time dependent PDEs, SIAM J. Numer. Anal. 23 (1986), 778–795.

2. , A moving-mesh FEM with local refinement for parabolic PDEs, Comput. Meth.
Appl. Mech. Engrg. 55 (1986), 3–26.

3. D. A. Anderson, Adaptive mesh schemes based on grid speeds, AIAA Paper 83-1931 (1983),
311.

4. , Equidistribution schemes, poisson generators, and adaptive grids, Appl. Math. Com-
put. 24 (1987), 211–227.

5. D.C. Arney and J.E. Flaherty, A two-dimensional mesh moving technique for time dependent
partial differential equations, J. Comput. Phys. 67 (1986), 124–144.

6. B.N. Azarenok, Realization of a second-order Godunov’s scheme, Comput. Meth. in Appl.
Mech. and Engin. 189 (2000), 1031–1052.

7. , Variational barrier method of adaptive grid generation in hyperbolic problems of
gas dynamics, SIAM J. Numer. Anal. 40 (2002), 651–682.

8. B.N. Azarenok, S.A. Ivanenko, and T. Tang, Adaptive mesh redistribution method based on
Godunov’s scheme, Commun. Math. Sci. 1 (2003), 152–179.

9. B.N. Azarenok and T. Tang, Reactive flow calculations on moving meshes, 2005, To appear
in J. Comput. Phys.

10. M.J. Baines, Moving Finite Elements, Oxford University Press, 1994.
11. , Grid adaptation via node movement, Appl. Numer. Math. 26 (1998), 77–96.
12. M.J. Baines, M.E. Hubbard, and P.K. Jimack, A Lagrangian moving finite element method

incorporating monitor functions, Advances in Scientific Computing and Applications (Bei-
jing/New York) (Y. Lu, W. Sun, and T. Tang, eds.), Science Press, 2004, pp. 32–44.

13. G. Beckett and J.A. Mackenzie, Convergence analysis of finite-difference approximations on
equidistributed grids to a singularly perturbed boundary value problem, Appl. Numer. Math.
35 (2000), 209–131.

14. G. Beckett, J.A. Mackenzie, and M.L. Robertson, A moving mesh finite element method for
the solution of two-dimensional stephan problems, J. Comput. Phys. 168 (2001), 500–518.

15. G. Beckett, J.A. Mackenzie, M.L. Robertson, and D.M. Sloan, On the numerical solutions of
one-dimensional PDEs using adaptive methods based on equidistribution, J. Comput. Phys.
167 (2001), 372–392.

16. , Computational solution of two-dimensional PDEs using adaptive methods based on
equidistribution, J. Comput. Phys. 182 (2002), 478–495.

17. K.W. Blake, Moving mesh methods for nonlinear parabolic partial differential equations,
Ph.D. thesis, University of Reading, U.K., 2001.

18. A. Bourlioux and A. Majda, Theoretical and numerical structure for unstable two-
dimensional detonations, Combustion and Flame 90 (1992), 211–229.

19. J.U. Brackbill and J.S. Saltzman, Adaptive zoning for singular problems in two dimensions,
J. Comput. Phys. 46 (1982), 342–368.

20. D.L. Brown and M.L. Minion, Performance of under-resolved two-dimensional incompress-
ible flow simulations, J. Comput. Phys. 122 (1995), 165–183.

21. C. Budd, W.-Z. Huang, and R.D. Russell, Moving mesh methods for problems with blow-up,
SIAM J. Sci. Comput. 17 (1996), 305–327.

22. W.M. Cao, W.-Z. Huang, and R.D. Russell, An r-adaptive finite element method based upon
moving mesh PDEs, J. Comput. Phys. 149 (1999), 221–244.

23. , A study of monitor functions for two dimensional adaptive mesh generation, SIAM
J. Sci. Comput. 20 (1999), 1978–1994.

24. H.D. Ceniceros, A semi-implicit moving mesh method for the focusing nonlinear Schrodinger
equation, Commun. Pure Appl. Anal. 1 (2002), 1–18.

25. H.D. Ceniceros and T.Y. Hou, An efficient dynamically adaptive mesh for potentially sin-
gular solutions, J. Comput. Phys. 172 (2001), 609–639.

26. Y.C. Chang, T.Y. Hou, B. Merriman, and S. Osher, A level set formulation of Eulerian
interface capturing methods for incompressible fluid flows, J. Comput. Phys. 124 (1996),
449–464.

27. A.A. Charakhch’yan and S.A. Ivanenko, Curvilinear grids of convex quadrilaterals, USSR
Comput. Math. Math. Phys. 2 (1988), 126–133.

30 TAO TANG

28. L. Chen, P. Sun, and J. Xu, Optimal anisotropic simplicial meshes for minimizing interpo-
lation errors in lp-norm, 2004, To appear in Math. Comp.

29. B. Cockburn, C. Johnson, C.-W. Shu, and E. Tadmor, Advanced Numerical Approximation
of Nonlinear Hyperbolic Equations, vol. 1697, Springer, Berlin, New York, 1997, Lecture
Notes in Math.

30. C. de Boor, Good approximation by splines with variable knots II, Springer Lecture Notes
Series 363, Springer Verlag, Berlin, 1973.

31. Y. Di, R. Li, T. Tang, and P.W. Zhang, Level set calculations of interface on a dynamically
adaptive grid, 2005, To be submitted.

32. , Moving mesh finite element methods for the incompressible Navier-Stokes equations,
2005, To appear in SIAM J. Sci. Comput.

33. A. Doelman, T.J. Kaper, and P.A. Zegeling, Pattern formation in the 1-d gray-scott model,
Nonlinearity 10 (1997), 523–563.

34. E. A. Dorfi and L. O’c. Drury, Simple adaptive grids for 1-d initial value problems, J.
Comput. Phys. 69 (1987), 175–195.

35. T. Dupont and Y. Liu, Symmetric error estimates for moving mesh Galerkin methods for
advection-diffusion equations, SIAM J. Numer. Anal. 40 (2002), 914–927.

36. A.S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian manifolds, J.
Comput. Phys. 95 (1991), 450–476.

37. M.G. Edwards, J.T. Oden, and L. Demkowicz, An hr adaptive approximate Riemann solver
for the Euler equations in two dimensions, SIAM J. Sci. Comput. 14 (1993), 185–217.

38. J. Eell and J.H. Sampson, Harmonic mapping of Riemannian manifolds, Amer. J. Math. 86

(1964), 109–160.
39. V.E. Fortov, B. Goel, C.D. Munz, A.L. Ni, A.V. Shutov, and O.Yu. Vorobiev, Numerical

simulations of nonstationary fronts and interfaces by the godunov method in moving grids,
Nuclear Science and Engineering 123 (1996), 169–189.

40. R.M. Furzeland, J.G. Verwer, and P.A. Zegeling, A numerical study of three moving gird
methods for 1-d partial differential equations which are based on the method of lines, J.
Comput. Phys. 89 (1990), 349–399.

41. T. Geßner and D. Kröner, Dynamic mesh adaptive for supersonic reactive flow, Hyper-
bolic Problems: Theory, Numerics, Applications (Basel-Boston-Berlin) (H. Freistühler and
G. Warnecke, eds.), Birkhäuser, 2001, pp. 415–424.

42. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory
and Algorithms, Springer-Verlag, 1986.

43. R. Hamilton, Harmonic Maps of Manifolds with Boundary, vol. 471, Springer-Verlag, New
York, 1975.

44. A. Harten and J.M. Hyman, Self–adjusting grid methods for one–dimensional hyperbolic
conservation laws, J. Comput. Phys. 50 (1983), 235–269.

45. D.F. Hawken, J.J. Gottlieb, and J.S. Hansen, Review of some adaptive node-movement
techniques in finite-element and finite difference solutions of partial differential equations,
J. Comput. Phys. 95 (1991), 254–302.

46. R.G. Hindman and J. Spencer, A new approach to truely adaptive grid generation, AIAA
Paper 83-0450 (1983), 1.

47. W.-Z. Huang, Practical aspects of formulation and solution of moving mesh partial differ-
ential equations, J. Comput. Phys. 171 (2001), 753–775.

48. , Variational mesh adaptation: isotropy and equidistribution, J. Comput. Phys. 174

(2001), 903–924.
49. W.-Z. Huang, Y. Ren, and R.D. Russell, Moving mesh methods based on moving mesh partial

differential equations, J. Comput. Phys. 113 (1994), 279–290.
50. , Moving mesh partial differential equations (MMPDEs) based on the equidistribution

principle, SIAM J. Numer. Anal. 31 (1994), 709–730.
51. W.-Z. Huang and R.D. Russell, Analysis of moving mesh partial differential equations with

spatial smoothing, SIAM J. Numer. Anal. 34 (1997), 1106–1126.
52. W.-Z. Huang and W. Sun, Variational mesh adaptation ii: Error estimates and monitor

functions, J. Comput. Phys. 184 (2003), 619–648.
53. P. Knupp, L. Margolin, and M. Shashkov, Reference Jacobian optimization-based rezone

strategies for arbitrary Lagrangian Eulerian methods, J. Comput. Phys. 176 (2002), 93–128.

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 31

54. N. Kopteva, Maximum norm a posteriori error estimates for a one-dimensional convection-
diffusion problem, SIAM J. Numer. Anal. 39 (2001), 423–441.

55. N. Kopteva and M. Stynes, A robust adaptive method for quasi-linear one-dimensional
convection-diffusion problem, SIAM J. Numer. Anal. 39 (2001), 1446–1467.

56. J.O. Langseth and R.J. LeVeque, A wave propagation method for 3d hyperbolic conservation
laws, J. Comput. Phys. 165 (2000), 126–166.

57. R. Li, Moving mesh method and its application, Ph.D. thesis, Peking University, School of
Mathematical Sciences, 2001, (in Chinese).

58. , On multi-mesh h-adaptive methods, 2004, To appear in J. Sci. Comput.
59. R. Li, W.-B. Liu, H.-P. Ma, and T. Tang, Adaptive finite element approximation for dis-

tributed elliptic optimal control problems, SIAM J. Control Optim. 41 (2002), 1321–1349.
60. R. Li and T. Tang, Moving mesh discontinuous Galerkin method for hyperbolic conservation

laws, 2004, Submitted to J. Sci. Comput. (under revision).
61. R. Li, T. Tang, and P.-W. Zhang, Moving mesh methods in multiple dimensions based on

harmonic maps, J. Comput. Phys. 170 (2001), 562–588.
62. , A moving mesh finite element algorithm for singular problems in two and three

space dimensions, J. Comput. Phys. 177 (2002), 365–393.
63. S. Li and L. Petzold, Moving mesh method with upwinding schemes for time-dependent

PDEs, J. Comput. Phys. 131 (1997), 368–377.

64. S. Li, L. Petzold, and Y. Ren, Stability of moving mesh systems of partial differential equa-
tions, SIAM J. Sci. Comput. 20 (1998), 719–738.

65. K. Liang and P. Lin, A splitting moving mesh method for 3-d quenching and blow-up prob-
lems, 2005, Preprint.

66. T. Linß, Uniform pointwise convergence of finite difference schemes using grid equidistribu-
tion, Computing 66 (2001), 27–39.

67. K. Lipnikov and M. Shashkov, Moving meshes for the Burgers equation, 2003, Report LA-
UR-03-7605, Los Alomas National Laboratory.

68. F. Liu, S. Ji, and G. Liao, An adaptive grid method and its application to steady Euler flow
calculations, SIAM J. Sci. Comput. 20 (1998), 811–825.

69. Y. Liu, R.E. Bank, T.F. Dupont, S. Garcia, and R.F. Santos, Symmetric error estimates for
moving mesh mixed methods for advection-diffusion equations, SIAM J. Numer. Anal. 40

(2003), 2270–2291.
70. J.A. Mackenzie and M.L. Robertson, The numerical solution of one-dimensional phase

change problems using an adaptive moving mesh method, J. Comput. Phys. 161 (2000),
537–557.

71. K. Miller, Moving finite element methods II, SIAM J. Numer. Anal. 18 (1981), 1033–1057.
72. K. Miller and R.N. Miller, Moving finite element methods I, SIAM J. Numer. Anal. 18

(1981), 1019–1032.
73. T.J. Oden, Progress in adaptive methods in computational fluid dynamics, Adaptive Methods

for Partial Differential Equations (Philadelphia) (J. E. Flaherty, P. J. Paslow, M. S. Shephard,
and J. D. Vasilakis, eds.), 1989, pp. 206–252.

74. E. Oran and J.P. Boris, Numerical Simulation of Reactive Flow, Elsvier, New York, 1987.
75. , Numerical simulation of reactive flow, 2nd ed., Cambridge University Press, 2001.
76. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms

based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), 12–49.
77. Ue-Li Pen, A high-resolution adaptive moving mesh hydrodynamic algorithm, Astrophysical

J. (suppl. series) 115 (1998), 19–34.
78. B. Perot and R. Nallapati, A moving unstructured staggered mesh method for the simulation

of incompressible free-surface flows, J. Comput. Phys. 184 (2003), 192–214.
79. Y. Qiu, D.M. Sloan, and T. Tang, Numerical solution of a singularly perturbed two-point

boundary value problem using equidistribution: analysis of convergence, J. Comput. Appl.
Math. 106 (2000), 121–143.

80. J.-F. Remacle, J. E. Flaherty, and M. S. Shephard, An adaptive discontinuous Galerkin
technique with an orthogonal basis applied to compressible flow problems, SIAM Rev. 45

(2003), 53–72.
81. W.Q. Ren and X.P. Wang, An iterative grid redistribution method for singular problems in

multiple dimensions, J. Comput. Phys. 159 (2000), 246–273.

32 TAO TANG

82. Y. Ren, Theory and computation of moving mesh methods for solving time-dependent partial
differential equations, Ph.D. thesis, Simon Fraser University, Dept. of Mathematics, Burnaby,
Canada, 1991.

83. Y. Ren and R.D. Russell, Moving mesh techniques based upon equidistribution, and their
stability, SIAM J. Sci. Statist. Comput. 13 (1992), 1265–1286.

84. R. Schoen and S.-T. Yau, On univalent harmonic maps between surfaces, Invent. Math. 44

(1978), 265–278.
85. B. Semper and G. Liao, A moving grid finite-element method using grid deformation, Numer.

Meth. PDEs 11 (1995), 603–615.
86. C.Y. Shen and H.L. Reed, Application of a solution-adaptive method to fluid flow: line and

arclength approach, Computers & Fluids 23 (1994), 373–395.
87. R.D. Skeel and M. Berzins, A method for the spatial discretization of parabolic differential

equations in one space variable, SIAM J Sci. Statist. Comp. 11 (1990), 1–32.
88. J.H. Smith, Analysis of moving mesh methods for dissipative partial differential equations,

Ph.D. thesis, Stanford University, Dept. Computer Science, 1996.
89. J.H. Smith and A.M. Stuart, Analysis of continuous moving mesh equations, 1996, Technical

report, SCCM Program, Stanford University, Stanford, CA.
90. V. Sochnikov and S. Efrima, Level set calculations of the evolution of boundaries on a

dynamically adaptive grid, Int. J. Numer. Meth. Eng. 56 (2003), 1913–1929.

91. J.M. Stockie, J.A. Mackenzie, and R.D. Russell, A moving mesh method for one-dimensional
hyperbolic conservation laws, SIAM J. Sci. Comput. 22 (2001), 1791–1813.

92. Z.-J. Tan, T. Tang, and Z.-R. Zhang, A simple moving mesh method for one- and two-
dimensional phase-field equations, 2005, To appear in J. Comput. Appl. Math.

93. H.Z. Tang, Solution of the shallow-water equations using an adaptive moving mesh method,
Int. J. Numer. Meth. Fluids 44 (2004), 789–810.

94. H.Z. Tang and T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic
conservation laws, SIAM J. Numer. Anal. 41 (2003), 487–515.

95. , Multi-dimensional moving mesh methods for shock computations, Recent Advances
in Scientific Computing and Partial Differential Equations (Providence, USA) (S.Y. Cheng,
C.-W. Shu, and T. Tang, eds.), Contemporary Mathematics, vol. 330, American Mathemat-
ical Society, 2003, pp. 169–183.

96. H.Z. Tang, T. Tang, and P.-W. Zhang, An adaptive mesh redistribution method for nonlinear
Hamilton-Jacobi equations in two- and three dimensions, J. Comput. Phys. 188 (2003), 543–
572.

97. Y. Tourigny and F. Hülsemann, A new moving mesh algorithm for the finite element solution
of variational problems, SIAM J. Numer. Anal. 35 (1998), 1416–1438.

98. A. van Dam, A moving mesh finite volume solver for macroscopic traffic flow models, 2002,
MSc thesis, Mathematical Institute, Utrecht University, Netherlands.

99. J.G. Verwer, J.G. Blom, R.M. Furzeland, and P.A. Zegeling, A moving-grid method for one-
dimensional PDEs based on the method of lines, Adaptive Methods for Partial Differential
Equations (M. S. Shephard J. E. Flaherty, P.J. Paslow and J. D. Vasilakis, eds.), SIAM,
Philadelphia, 1989, pp. 160–185.

100. D. Wang and X.P. Wang, A three-dimensional adaptive method based on the iterative grid
redistribution, J. Comput. Phys. 199 (2004), 423–436.

101. P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with
strong shocks, J. Comput. Phys. 54 (1984), 115–173.

102. N.N. Yanenko, E.A. Kroshko, V.V. Liseikin, V.M. Fomin, V.P. Shapeev, and Y.A. Shitov,
Methods for the construction of moving grids for problems of fluid dynamics with big de-
fromations, Proceedings of the 5th Inter. Conf. on Numer. Meth. in Fluid Mechanics (A.I.
van de Vooren and P.J. Zandbergen, eds.), Springer, 1976, Lecture Notes in Physics, vol. 59.,
pp. 454–459.

103. P.A. Zegeling, R-refinement with finite elements or finite differences for evolutionary pde
models, Appl. Numer. Math. 26 (1998), 97–104.

104. , Moving grid techniques, Handbook of Grid Generation (B. K. Soni J. F. Thompson
and N. P. Weatherill, eds.), CRC Press, 1999, pp. 37.1–37.18.

105. , On resistive MHD models with adaptive moving meshes, 2005, To appear in J. Sci.
Comput.

MOVING MESH METHODS FOR COMPUTATIONAL FLUID DYNAMICS 33

106. P.A. Zegeling and R. Keppens, Adaptive method of lines for magnetohydrodynamic pde mod-
els, 2001, a chapter in the book Adaptive Method of Lines, CRC Press.

107. Z.-R. Zhang, Moving mesh methods for convection-dominated equations and nonlinear con-
servation laws, Ph.D. thesis, Hong Kong Baptist University, Dept of Mathematics, 2003.

108. Z.-R. Zhang and T. Tang, An adaptive mesh redistribution algorithm for convection-
dominated problems, Commun. Pure Appl. Anal. 1 (2002), 341–357.

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong

Kong & Institute of Computational Mathematics, Academy of Mathematics and System

Sciences, Chinese Academy of Sciences, Beijing 100080, China.

E-mail address: ttang@math.hkbu.edu.hk, ttang@lsec.cc.ac.cn

