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Abstract

A one-dimensional transient quantum Euler-Poisson system for the electron density,
the current density and the electrostatic potential in bounded intervals is considered.
The equations include the Bohm potential accounting for quantum mechanical effects
and are of dispersive type. They are used, for instance, for the modeling of quantum
semiconductor devices.

The existence of local-in-time solutions with small initial velocity is proven for
general pressure-density functions. If a stability condition related to the subsonic con-
dition for the classical Euler equations is imposed, the local solutions are proven to
exist globally in time and tend to the corresponding steady-state solution exponen-
tially fast as the time tends to infinity.

Keywords. Quantum Euler-Poisson system, existence of global-in-time classical solu-
tions, nonlinear fourth-order wave equation, exponential decay rate, long-time behav-
ior of the solutions.

1 Introduction
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2 Quantum Euler-Poisson Systems

1.1 The Model Equations

In 1927, Madelung gave a fluid-dynamical description of quantum systems governed by
the Schrödinger equation for the wave function ψ:

iε∂tψ = −ε2

2
∆ψ − V ψ in Rd × (0,∞),

ψ(·, 0) = ψ0 in Rd,

where d ≥ 1 is the space dimension, ε > 0 denotes the scaled Planck constant, and V =
V (x, t) is some (given) potential. Separating the amplitude and phase of ψ = |ψ| exp(iS/ε),
the particle density ρ = |ψ|2 and the particle current density j = ρ∇S for irrotational flow
satisfy the so-called Madelung equations [21]

∂tρ + divj = 0, (1.1)

∂tj + div
(

j ⊗ j

ρ

)
− ρ∇φ− ε2

2
ρ∇

(
∆
√

ρ√
ρ

)
= 0 in Rd × (0,∞), (1.2)

where the i-th component of the convective term div(j ⊗ j/ρ) equals

d∑

k=1

∂

∂xk

(
jijk

ρ

)
.

The equations (1.1)-(1.2) can be interpreted as the pressureless Euler equations including
the quantum Bohm potential

ε2

2
∆
√

ρ√
ρ

. (1.3)

They have been used for the modeling of superfluids like Helium II [16, 20].
Recently, Madelung-type equations have been derived to model quantum phenom-

ena in semiconductor devices, like resonant tunneling diodes, starting from the Wigner-
Boltzmann equation [6] or from a mixed-state Schrödinger-Poisson system [8, 9]. There are
several advantages of the fluid-dynamical description of quantum semiconductors. First,
kinetic equations, like the Wigner equation, or Schrödinger systems are computationally
very expensive, whereas for Euler-type equations efficient numerical algorithms are avail-
able [5, 25]. Second, the macroscopic description allows for a coupling of classical and
quantum models. Indeed, setting the Planck constant ε in (1.2) equal to zero, we obtain
the classical pressureless equations, so in both pictures, the same (macroscopic) variables
can be used. Finally, as semiconductor devices are modeled in bounded domains, it is
easier to find physically relevant boundary conditions for the macroscopic variables than
for the Wigner function or for the wave function.

The Madelung-type equations derived by Gardner [6] and Gasser et al. [8] also include
a pressure term and a momentum relaxation term taking into account interactions of the
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electrons with the semiconductor crystal, and are self-consistently coupled to the Poisson
equation for the electrostatic potential φ:

∂tρ + divj = 0, (1.4)

∂tj + div
(

j ⊗ j

ρ

)
+∇P (ρ)− ρ∇φ− ε2

2
ρ∇

(
∆
√

ρ√
ρ

)
= − j

τ
, (1.5)

λ2∆φ = ρ− C(x) in Ω× (0,∞), (1.6)

where Ω ⊂ Rd is a bounded domain, τ > 0 is the (scaled) momentum relaxation time
constant, λ > 0 the (scaled) Debye length, and C(x) is the doping concentration modeling
the semiconductor device under consideration [12, 24]. The pressure is assumed to depend
only on the particle density and, like in classical fluid dynamics, often the expression

P (ρ) =
T0

γ
ργ , ρ ≥ 0, γ ≥ 1, (1.7)

with a constant T0 > 0 is employed [6, 11]. Isothermal fluids correspond to γ = 1,
isentropic fluids to γ > 1. Notice that the particle temperature is T (ρ) = T0ρ

γ−1. In
this paper we consider general (smooth) pressure functions. The equations (1.4)-(1.6) are
referred to as the quantum Euler-Poisson system or as the quantum hydrodynamic model.

In this paper, we investigate the (local and global) existence and long-time behavior
of solutions of the following one-dimensional quantum Euler-Poisson system:

ρt + jx = 0, (1.8)

jt +
(

j2

ρ
+ P (ρ)

)

x

= ρφx +
1
2
ε2ρ

(
(
√

ρ)xx√
ρ

)

x

− j

τ
, (1.9)

φxx = ρ− C(x), (1.10)

with the following initial and boundary conditions

ρ(x, 0) = %1(x) > 0, j(x, 0) = j1(x) =: %1(x)v1(x), (1.11)

ρ(0, t) = ρ1, ρ(1, t) = ρ2, ρx(0, t) = ρx(1, t) = 0, (1.12)

φ(0, t) = 0, φ(1, t) = Φ0, (1.13)

for (x, t) ∈ (0, 1)× (0,∞), where ρ1, ρ2, Φ0 > 0, and v1 is the initial velocity.
The existence and uniqueness of steady-state (classical) solutions to the quantum Euler-

Poisson system for current density j0 = 0 (thermal equilibrium) has been studied in [1, 7].
The stationary equations for j0 > 0 have been considered in [4, 11, 27] for general mono-
tone pressure functions, however, with different boundary conditions, assuming Dirichlet
data for the velocity potential S [11] or employing nonlinear boundary conditions [4, 27].
Existence of steady-state solutions to (1.8)–(1.10) subject to the boundary conditions
(1.12)–(1.13) is proven in [10] for the linear pressure function P (ρ) = ρ and in [14] for
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general pressure functions P (ρ) also allowing for non-convex or non-monotone pressure-
density relations. So far, to our knowledge, the only known results on the existence of the
time-dependent system (1.4)-(1.6) have been obtained in [13] for smooth local-in-time so-
lutions on bounded domains and in [17] for “small” irrotational global-in-time solutions in
the whole space assuming strictly convex pressure functions and a constant doping profile.

In the present paper, we consider the initial-boundary-value problem (IBVP) (1.8)–
(1.13) for general pressure and non-constant doping profile, and we focus on the local
and global existence of classical solutions (ρ, j, φ) of the IBVP (1.8)–(1.13) and their time-
asymptotic convergence to the stationary solutions (ρ0, j0, φ0) obtained in [14].

First, we show that there exists a classical local-in-time solution for regular initial
data. Second, we prove that if a certain “subsonic” condition (see (1.25)) holds and if
the initial data is a perturbation of a stationary solution (ρ0, j0, φ0), a classical solution
(ρ, j, φ) exists globally in time and tends to (ρ0, j0, φ0) exponentially fast as time tends to
infinity.

In dealing with the IBVP (1.8)–(1.13) we have to overcome the following difficulties.
First, since the general pressure P (ρ) can be non-convex (even zero or “negative”, see
Remark 1.6), the left part of equations (1.8)–(1.10) may be not hyperbolic any more.
Unlike [17], we cannot apply the local existence theory of quasilinear symmetric hyperbolic
systems [3, 15, 22, 23]. We have to establish a new local existence theory. Second, the
appearance of the nonlinear quantum Bohm potential in (1.9) requires that the density
is strictly positive for regular solutions. This together with the structure of the quantum
term causes problems in the local and global existence proofs.

1.2 Main results

Before stating our main results we introduce some notation. We denote by L2 = L2(0, 1)
and Hk = Hk(0, 1) the Lebesgue space of square integrable functions and the Sobolev
space of functions with square integrable weak derivatives of order k, respectively. The
norm of L2 is denoted by ‖·‖0 = ‖·‖, and the norm of Hk is ‖·‖k. The space Hk

0 = Hk
0 (0, 1)

is the closure of C∞
0 (0, 1) in the norm of Hk. Let T > 0 and let B be a Banach space. Then

Ck(0, T ;B) (Ck([0, T ];B), respectively) denotes the space of B-valued k-times continuously
differentiable functions on (0, T ) ([0, T ], respectively), L2(0, T ;B) is the space of B-valued
L2-functions on (0, T ), and W k,p(0, T ;B) the space of B-valued W k,p-functions on (0, T ).
Finally, C always denotes a generic positive constant.

It is convenient to make use of the variable transformation ρ = w2 in (1.8)–(1.10)
which yields the following IBVP for (w, j, φ):

2wwt + jx = 0, (1.14)

jt +
(

j2

w2
+ P (w2)

)

x

= w2φx +
1
2
ε2w2

(wxx

w

)
x
− j

τ
, (1.15)

φxx = w2 − C(x), (1.16)
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with the initial and boundary conditions

(w, j)(x, 0) = (w1, j1)(x) = (
√

%1, %1v1)(x), (1.17)

w(0, t) =
√

ρ1, w(1, t) =
√

ρ2, wx(0, t) = wx(1, t) = 0, (1.18)

φ(0, t) = 0, φ(1, t) = Φ0, (1.19)

for x ∈ (0, 1), t ≥ 0. This problem is equivalent to (1.8)–(1.13) for classical solutions with
positive particle density.

We will assume throughout this paper compatibility conditions for the IBVP (1.14)–
(1.19) in the sense that the time derivatives of the boundary values and the spatial deriva-
tives of the initial data are compatible at (x, t) = (0, 0) and (x, t) = (1, 0) in (1.14)–(1.16).

We will prove the following local existence result for the IBVP (1.14)–(1.19):

Theorem 1.1 Assume that

P ∈ C4(0,+∞), C ∈ H2, (1.20)

(w1, j1) ∈ H6 ×H5 such that w1(x) > 0 for x ∈ [0, 1], and for some α ∈ [(1 + 2
√

2ε)−1, 1)

‖v1‖C1([0,1]) <
(1− α)w∗
8
√

2‖w1‖1

, (1.21)

where
w∗ = min

x∈[0,1]
w1(x) > 0.

Then, there is a number T∗∗ (determined by (3.69)), such that there exists a unique classical
solution (w, j, φ) of the IBVP (1.14)–(1.19) in the time interval [0, T ], with 0 < T ≤ T∗∗,
satisfying w ≥ (1− α)w∗ > 0 in [0, 1]× [0, T ] and

‖w(t)‖2
6 + ‖j(t)‖2

5 + ‖φ(t)‖2
4 < ∞ for t ≤ T.

Remark 1.2 (1) It is well-known that for classical hydrodynamic equations, monotone
pressure-density relations are required to guarantee short-time existence of classical solu-
tions [2, 18]. The condition (1.20) means that this condition is not necessary (to a certain
extent) when the quantum effects are taken into account.

(2) Condition (1.21) is needed to prove the positivity of the particle density. A similar
condition has been used to prove the existence of stationary solutions [11]. This condition
allows for arbitrarily large current densities j1 = w2

1v1, for instance, if w1 is a sufficiently
large constant.

(3) We are able to show the statements of Theorem 1.1 under the slightly more general
condition

‖v1‖C1([0,1]) < min
{

αε,
(1− α)
2
√

2

}
w∗

4‖w1‖1
, α ∈ (0, 1). (1.22)

Then (1.21) is a special case for α > (1+2
√

2ε)−1 which is equivalent to αε ≥ (1−α)/2
√

2.
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(4) The local existence of the Cauchy problem in Rd or Td can be shown in the same
framework, see [19].

Theorem 1.1 is proven by an iteration method and compactness arguments. More
precisely, we construct a sequence of approximate solutions which is uniformly bounded in
a certain Sobolev space in a fixed (maybe small) time interval. Compactness arguments
then imply that there is a limiting solution which proves to be a local-in-time solution of
(1.14)–(1.19). Unlike [17] we cannot apply the theory of quasilinear symmetric hyperbolic
systems [3, 15, 22, 23] to construct (local) approximate solutions and obtain uniform
bounds in Sobolev spaces because the pressure can be non-convex causing the loss of
entropy and hyperbolicity of (1.14)–(1.15).

The idea of the local existence result is first to linearize the system (1.14)–(1.16) around
its initial state (w1, j1, φ1), where φ1 solves the Dirichlet problem (1.16) and (1.19) with w

replaced by w1, and to consider the equations for the perturbation (ψ, η, e) = (w−w1, j−
j1, φ − φ1). The main idea is to write the evolution equation for the perturbed particle
density as a semilinear fourth-order wave equation. Then, we construct approximate
solutions (ψi, ηi, ei) (i ≥ 1) from a fixed-point procedure, which are expected to converge
to a solution (ψ, η, e) of the perturbed problem as i → ∞. For this, we derive uniform
bounds in Sobolev spaces on a uniform time interval and apply standard compactness
arguments (see Section 3). A further analysis shows that (w, j, φ) = (w1 +ψ, j1 +η, φ1 +e)
with w > 0 is the expected local (in time) solution of the original problem (1.14)–(1.19).

To extend the local classical solution globally in time, we need to establish uniform
estimates. We consider the situation when the initial data is close to the stationary
solution (w0, j0, φ0) of (1.14)–(1.16) with boundary conditions (1.18)–(1.19). The existence
of stationary solutions (w0, j0, φ0) of the boundary-value problem (1.14)–(1.16) and (1.18)–
(1.19) for general pressure functions P (ρ) was obtained in [14] (see Theorem 1.3 below).

Assume that there is a function A ∈ H2(0, 1) satisfying

A(x) > 0 for x ∈ (0, 1), A(0) = ρ1, A(1) = ρ2, Ax(0) = Ax(1) = 0 (1.23)

such that for a set E ⊆ [0, 1], it holds

P ′(A)− j2
0

A2

{
≤ 0, x ∈ E,

> 0, x ∈ [0, 1]\E.
(1.24)

Then we conclude the existence of stationary solutions (w0, j0, φ0) of (1.14)–(1.16)
satisfying the boundary conditions (1.18)–(1.19):

Theorem 1.3 ([14]) Let (1.20), (1.23)–(1.24) hold. For given κ ∈ (0, 1), assume that

min
x∈[0,1]

A2

(
1
4
κε2 + P ′(A)

)
> j2

0 . (1.25)
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Then there is a unique solution (w0, j0, φ0) of the stationary version of the boundary-value
problem (1.14)–(1.16) and (1.18)–(1.19) such that

A∗‖w0 −
√
A‖2 + A0‖w0x‖2

3 + ‖φ0x‖2
1 ≤ Cδ0,

provided δ0 := ‖A′‖1 + ‖A − C‖ is small enough. Here, A∗ = minx∈[0,1]A(x),

A0 = min
x∈[0,1]

(
1
4
κε2 + P ′(A)− j2

0A−2

)
> 0, (1.26)

and C > 0 is a constant depending on j0, τ and A.
Let ρ0 = w2

0. Then (ρ0, j0, φ0) is a solution of the stationary version of the boundary-
value problem (1.8)–(1.10) and (1.12)–(1.13) satisfying

A∗‖ρ0 −A‖2 + A0‖ρ0x‖2
3 + ‖φ0x‖2

1 ≤ C ′δ0, ¤

and C ′ > 0 is a constant depending on j0, τ and A.

Remark 1.4 (1) When E = ∅ the assumption (1.24) corresponds exactly to the subsonic
condition for classical fluids [2, 18]. We recall that a classical fluid is in the subsonic state
if the velocity is smaller than the sound speed

√
P ′(ρ). Only for subsonic fluids, we can

expect to have existence of classical solutions [2, 18]. Therefore, in order to get existence
of classical solutions of the quantum hydrodynamic equations, we expect that a condition
corresponding to the classical subsonic condition is needed. It turns out that (1.24) is
such a condition. Notice that the condition (1.25) can allow for non-empty sets E when
quantum effects are involved.

(2) The condition (1.24) can be replaced by

1
4
κε2 + |E|min

x∈E
(p′(A)− j2

0A−2) > 0, κ ∈ (0, 1), (1.27)

in order to obtain the existence and uniqueness of classical solutions. Here, |E| denotes
the volume of the subset E.

(2) We recall that in the steady state, the current density j0 is a constant. If j0 = 0,
we obtain the thermal equilibrium state. The condition (1.24) is satisfied if j0 > 0 is
sufficiently small. Thus, Theorem 1.3 means that we can show the existence of solutions
“close” to the thermal equilibrium state.

In the following, we use the abbreviation

ψ0 = w1 − w0, η0 = j1 − j0. (1.28)

In view of the uniform a-priori estimates of Section 2, we are able to extend the local
classical solution globally in time and prove its exponential convergence to the stationary
solution (w0, j0, φ0):
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Theorem 1.5 Assume that (1.20), (1.23)–(1.25) hold. Let (w0, j0, φ0) be the stationary
solution of the boundary-value problem (1.14)–(1.16) and (1.18)–(1.19) given by Theo-
rem 1.3 for sufficiently small δ0. Assume that the initial datum (w1, j1) ∈ H6 × H5

satisfies (1.21) and w1 > 0 in [0, 1]. Then there is a number m1 > 0 such that if

‖ψ0‖6 + ‖η0‖5 = ‖w1 − w0‖6 + ‖j1 − j0‖5 ≤ m1,

the (classical) solution (w, j, φ) of the IBVP (1.14)–(1.19) exists globally in time and sat-
isfies

‖(w − w0)(t)‖2
6 + ‖(j − j0)(t)‖2

5 + ‖(φ− φ0)(t)‖2
4 ≤ C(‖ψ0‖2

6 + ‖η0‖2
5)e

−Λ0t (1.29)

for all t ≥ 0. Here, C > 0 and Λ0 > 0 are constants independent of the time variable t.

Remark 1.6 Theorems 1.1–1.5 also apply for non-monotone or even “negative” pressure
functions. These functions are related to quantum mechanical phenomena in which the
motion of the particles is affected by their attractive interaction [16]. A typical example is
the focusing nonlinear Schrödinger equation. In fact, this equation is formally equivalent
to the quantum Euler-Poisson system with infinite relaxation time and with “negative”
pressure.

Using Theorems 1.1–1.5 and the variable transformation ρ = w2, we also obtain the
local and global existence of classical solutions of the original IBVP (1.8)–(1.13) and can
establish their large-time behavior:

Theorem 1.7 Let (1.20) hold. Assume that (
√

%1, j1) ∈ H6 × H5 such that %1 > 0 in
[0, 1] and

‖v1‖C1([0,1]) < min
{

αε,
(1− α)
2
√

2

}
%∗

4‖√%
1
‖1

, α ∈ (0, 1),

where
%∗ = min

x∈[0,1]

√
%1(x).

Then there is a number T ′∗ > 0 such that there exists a classical solution (ρ, j, φ) of the
IBVP (1.8)–(1.13) in t ∈ [0, T ′∗] satisfying ρ > 0 in [0, 1]× [0, T ′∗] and

‖ρ(t)‖2
6 + ‖j(t)‖2

5 + ‖φ(t)‖2
4 < ∞, t ≤ T ′∗. (1.30)

Furthermore, assume that (1.23)–(1.25) hold and let (ρ0, j0, φ0) be the stationary so-
lution of the boundary-value problem (1.8)–(1.10) and (1.12)–(1.13) given by Theorem 1.3
with sufficiently small δ0. Then, there is a number m2 > 0 such that if ‖√%1 −√ρ0‖6 +
‖η0‖5 ≤ m2, the solution (ρ, j, φ) of the IBVP (1.14)–(1.19) exists globally in time and
satisfies

‖(ρ− ρ0)(t)‖2
6 + ‖(j − j0)(t)‖2

5 + ‖(φ− φ0)(t)‖2
4 ≤ C(‖ψ0‖2

6 + ‖η0‖2
5)e

−Λ1t,

for all t ≥ 0, where C > 0 and Λ1 > 0 are constants independent of t and the pair (ψ0, η0)
is defined in (1.28).
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This paper is arranged as follows. Section 2 is concerned with uniform a-priori es-
timates of local (in time) solutions. We reformulate the original problem in Section 2.1
as a nonlinear fourth-order wave equation and establish the a-priori estimates for local
solutions in Section 2.2. The a-priori estimates and the local existence result of Section
3 imply the global existence. In order to prove the local existence result, we first give a
result on the existence of solutions of an abstract fourth-order wave equation (Section 3.1).
This wave equation allows us to construct a sequence of approximate solutions converging
to a local solution of the problem under consideration (Section 3.2).

2 Proof of Theorem 1.5

In this section, we establish uniform a-priori estimates for local classical solutions of (1.14)–
(1.16). This yields, together with the usual continuity argument, the existence of global-
in-time solutions and proves Theorem 1.5. For notational simplicity, we set τ = 1.

2.1 Reformulation of the original problem

Let (w0, j0, φ0) be the steady-state solution of the boundary-value problem (1.14)–(1.16)
and (1.18)–(1.19). For any T > 0, assume that (w, j, φ) is a solution to the IBVP (1.14)–
(1.19) in [0, T ].

Differentiating (1.14) with respect to t and (1.15) with respect to x and adding the
resulting equations leads to a nonlinear fourth-order wave equation for w:

wtt + wt +
1
w

w2
t +

1
2w

(w2φx)x − 1
2w

[
P (w2) +

j2

w2

]

xx

+
1
4
ε2wxxxx − 1

4
ε2 w2

xx

w
= 0, (2.1)

where we have used the identity

[
w2

(wxx

w

)
x

]
x

= w

[
wxxxx − w2

xx

w

]
. (2.2)

Similarly, the steady-state solution of (1.14)–(1.15) satisfies

1
2w0

(w2
0φ0x)x − 1

2w0

[
P (w2

0) +
j2
0

w2
0

]

xx

+
1
4
ε2w0xxxx − 1

4
ε2 w2

0xx

w0
= 0. (2.3)

Introduce the perturbations of the steady-state

ψ = w − w0, η = j − j0, e = φ− φ0. (2.4)

Then, using (1.14), (2.1)–(2.3), and (1.16), the evolution equations for (ψ, η, e) read as
follows:

ηt + η = g0(x, t), (2.5)
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ψtt + ψt +
1
4
ε2ψxxxx +

1
2
(2w2

0 + 3w0ψ + φ0xx + ψ2)ψ

− 1
w0

[
j0

w2
0

η

]

xx

−
[(

P ′(w2
0)−

j2
0

w4
0

)
ψx

]

x

= g1(x, t) + g2(x, t),
(2.6)

exx = (2w0 + ψ)ψ, (2.7)

with the following initial-boundary values

η(x, 0) = η0(x), x ∈ (0, 1), (2.8)

ψ(x, 0) = ψ0(x), ψt(x, 0) = θ0(x) =: − η0x(x)
2(w0 + ψ0)(x)

, x ∈ (0, 1), (2.9)

ψ(0, t) = ψ(1, t) = ψx(0, t) = ψx(1, t) = 0, t ≥ 0, (2.10)

e(0, t) = e(1, t) = 0, t ≥ 0, (2.11)

and the definitions

g0(x, t) =−
[

(j0 + η)2

(w0 + ψ)2
− j2

0

w2
0

+ P ((w0 + ψ)2)− P (w2
0)

]

x

+
1
2
ε2(w0 + ψ)2

(
(w0 + ψ)xx

w0 + ψ

)

x

− 1
2
ε2w2

0

(
w0xx

w0

)

x

+ (2w0 + ψ)ψφ0x + (w0 + ψ)2ex, (2.12)

g1(x, t) =
ε2(2w0xx + ψxx)

4w0
ψxx − ε2(w0 + ψ)2xx

4(w0 + ψ)w0
ψ − ψ2

t

(w0 + ψ)

− (φ0x + ex)ψx − w0xex, (2.13)

g2(x, t) =
1

2(w0 + ψ)

[
P ((w0 + ψ)2) +

(j0 + η)2

(w0 + ψ)2

]

xx

− 1
2w0

[
P (w2

0) +
j2
0

w2
0

]

xx

−
[(

P ′(w2
0)−

j2
0

w4
0

)
ψx

]

x

− 1
w0

[
j0

w2
0

η

]

xx

. (2.14)

Notice that we can write (1.14) equivalently as

2(w0 + ψ)ψt + ηx = 0, (2.15)

which allows us to estimate the derivatives of η in terms of ψt.

2.2 The a-priori estimates

We assume that for given T > 0, there is a classical solution (ψ, η, e) of the IBVP (2.5)–
(2.11) satisfying the regularity condition

(ψ, η, e) ∈ X(T ) := C0([0, T ]; H6)× C0([0, T ];H5)× C0([0, T ]; H4).
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We also use the definition

δT := max
0≤t≤T

(‖ψ(t)‖6 + ‖η(t)‖5). (2.16)

It is easy to verify that if δT is sufficiently small, there are constants w−, w+, j−, and j+

such that
0 < w− ≤ w0 + ψ ≤ w+, j− ≤ j0 + η ≤ j+.

In the following we assume that δT is sufficiently small such that the above estimates hold.

Lemma 2.1 It holds for (ψ, η, e) ∈ X(T ) and (x, t) ∈ (0, 1)× (0, T ),

ex(x, t)2 + ‖e(t)‖2
4 ≤ C‖ψ(t)‖2

2, ext(x, t)2 + et(x, t)2 + ‖et(t)‖2
4 ≤ C‖ψt(t)‖2

2, (2.17)

‖η(t)‖2 ≤ C‖η0‖2 exp{−c0t}+ C‖(ψt, ψ, ψxxx)‖2, (2.18)

η(x, t)2 ≤ C‖η0‖2 exp{−c0t}+ C‖(ψt, ψ, ψxxx)‖2, (2.19)

‖ηt(t)‖2 ≤ C‖η0‖2 exp{−c0t}+ C‖(ψt, ψ, ψxxx)‖2, (2.20)

‖(ψxxxx, ψxxx)‖2 ≤ C‖(ψtt, ψt, ψ, ψxx, ψx, ψxt)‖2, (2.21)

provided that δT + δ0 is small enough (see Theorem 1.3 for the definition of δ0). Here,
c0, C > 0 are constants independent of time t.

The notation ‖(f, g, . . .)‖2 means ‖f‖2 + ‖g‖2 + · · · .

Proof: The estimates (2.17) follow directly from the formula

e =
∫ 1

0
G(x, y)(2w0(y) + ψ(y, t))ψ(y, t)dy,

and Hölder’s inequality. Here, G(x, y) denotes the Green’s function

G(x, y) =

{
x(1− y), x < y,

y(1− x), x > y.
(2.22)

To prove (2.18)–(2.20), it is sufficient to prove (2.18). In fact, from (2.15) follows

η2 ≤
∫ 1

0
η2dx + 2

∫ 1

0
|ηxη|dx ≤ C

∫ 1

0
η2dx + C

∫ 1

0
ψ2

t dx,

which gives (2.19) if (2.18) is proved. In order to see that also (2.20) follows from (2.18),
we proceed as follows.

We conclude from the boundary condition (2.10) that there exists 0 ≤ x1(t) ≤ 1 such
that

ψx(x1(t), t) = 0,
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and that there are x2(t), x3(t) and x4(t) satisfying 0 ≤ x2(t) ≤ x1(t) ≤ x3(t) ≤ 1 and
0 ≤ x2(t) ≤ x4(t) ≤ x3(t) ≤ 1 such that

ψxx(x2(t), t) = ψxx(x3(t), t) = ψxxx(x4(t), t) = 0.

Thus, by Poincaré’s and Hölder’s inequality, we obtain
∫ 1

0
ψ2

xdx ≤ C

∫ 1

0
ψ2

xxdx, (2.23)

∫ 1

0
ψ2

xxdx =
∫ 1

0

(∫ x

x3(t)
ψxxx(y, t)dy

)2

dx ≤
∫ 1

0
ψ2

xxxdx, (2.24)

∫ 1

0
ψ2

xxxdx =
∫ 1

0

(∫ x

x4(t)
ψxxxx(y, t)dy

)2

dx ≤
∫ 1

0
ψ2

xxxxdx. (2.25)

Then, using (2.5), (2.17), (2.15), and (2.23)–(2.24), we can estimate
∫ 1

0
η2

t dx ≤C

∫ 1

0

{(
(j0 + η)2

(w0 + ψ)2
− j2

0

w2
0

+ P ((w0 + ψ)2)− P (w2
0)

)

x

}2

dx

+ C

∫ 1

0
[η2 + ψ2φ2

0x + e2
x]dx + C

∫ 1

0
[((2w0 + ψ)ψ)2xxx + ((2w0x + ψx)ψx)2x]dx

≤C

∫ 1

0
[η2 + ψ2 + ψ2

t + ψ2
x + ψ2

xx + ψ2
xxx]dx

≤C

∫ 1

0
[η2 + ψ2 + ψ2

t + ψ2
xxx]dx.

Hence, the estimate (2.20) follows as soon as (2.18) is shown.
We now prove (2.18). Multiplying (2.5) by η, integrating over x ∈ (0, 1) and integrating

by parts gives, in view of the boundary conditions (2.10),

1
2

d

dt

(∫ 1

0
η2dx

)
+

∫ 1

0
η2dx

≤−
[
η
(j0 + η)2 − j2

0

w2
0

]∣∣∣∣
1

0

+
∫ 1

0

∣∣η((2w0 + ψ)ψφ0x + (w0 + ψ)2ex)
∣∣ dx

+
∫ 1

0

∣∣∣∣ηx

(
(j0 + η)2

(w0 + ψ)2
− j2

0

w2
0

+ P ((w0 + ψ)2)− P (w2
0)

)∣∣∣∣ dx

+ C

∫ 1

0
(|η((2w0 + ψ)ψ)xxx|+ |ηxψx(2w0x + ψx)|) dx

∆=I0 + I1 + I2 + I3. (2.26)

The integrals I0, I1, I2, and I3 are estimated as follows.

I0 ≤
∫ 1

0

∣∣∣∣ηx
(j0 + η)2 − j2

0

w2
0

+ 2ηηx
j0 + η

w2
0

− 2ηw0x
(j0 + η)2 − j2

0

w3
0

∣∣∣∣ dx
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≤
(
Cδ0 +

1
12

)∫ 1

0
η2dx + C

∫ 1

0
ψ2

t dx, (2.27)

I1 ≤ 1
12

∫ 1

0
η2dx + C

∫ 1

0
(ψ2 + e2

x)dx ≤ 1
12

∫ 1

0
η2dx + C

∫ 1

0
ψ2dx, (2.28)

I2 ≤C

∫ 1

0
|ψtη|+ |ψψt|dx ≤ 1

12

∫ 1

0
η2dx + C

∫ 1

0
[ψ2

t + ψ2]dx, (2.29)

I3 ≤ 1
12

∫ 1

0
η2dx + C

∫ 1

0
[ψ2

t + ψ2 + ψ2
xxx]dx, (2.30)

provided that δT + δ0 is small enough. In the above estimates we have used (2.15), (2.17),
(2.23) and (2.24). Substituting (2.27)–(2.30) into (2.26) yields

d

dt

(∫ 1

0
η2dx

)
+ c0

∫ 1

0
η2dx ≤ C

∫ 1

0
[ψ2

t + ψ2 + ψ2
xxx]dx, (2.31)

where c0 ∈ (0, 4
3 − Cδ0] is a constant and δ0 is chosen so small that Cδ0 < 4

3 . Applying
Gronwall’s inequality to (2.31) gives (2.18).

Finally, we prove (2.21). By (2.6) and (2.18), it holds

∫ 1

0
ψ2

xxxxdx ≤C

∫ 1

0
(ψ2

tt + ψ2
t + ψ2 + ψ2

xx + ψ2
x + ψ2

xt)dx

+ C(δT + δ0)
∫ 1

0
ψ2

xxxdx. (2.32)

The combination of (2.32) and (2.25) leads to (2.21) provided that δT + δ0 is small enough
such that C(δT + δ0) < 1.

We prove now uniform estimates in Sobolev spaces for ψ, ψt and ψtt.

Lemma 2.2 It holds for (ψ, η, e) ∈ X(T ) and 0 < t < T ,

‖ψ(t)‖2
4 + ‖ψt(t)‖2

2 + ‖ψtt(t)‖2 + ‖e(t)‖2
2 +

∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
(ψ2

x + ψ2
xt)dx

≤ C(‖(ψ0‖2
4 + ‖η0‖2

3) exp{−β3t}, (2.33)

provided that δT + δ0 is small enough. Here, C, β3 > 0 are constants independent of t.

Proof: Step 1: differential inequality for ψ and ψt in L2. We multiply (2.6) by
ψ, integrate the resulting equation over (0, 1) and integrate by parts, taking into account
the boundary conditions (2.10):

d

dt

(∫ 1

0

[
1
2
ψ2 + ψψt

]
dx

)
−

∫ 1

0
ψ2

t dx +
1
2

∫ 1

0
(2w2

0 + 3w0ψ + φ0xx + ψ2)ψ2dx
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=−
∫ 1

0

[
1
4
ε2ψ2

xx +
(

P ′(w2
0)−

j2
0

w4
0

)
ψ2

x

]
dx +

∫ 1

0

ψ

w0

(
j0

w2
0

η

)

xx

dx

+
∫ 1

0
g1ψdx +

∫ 1

0
g2ψdx

∆=I4 + I5 + I6 + I7. (2.34)

We estimate the integrals I4, . . . , I7 term by term. From (2.23) follows

I4 =−
∫ 1

0

[
1
4
ε2ψ2

xx +
(

P ′(A)− j2
0

A2

)
ψ2

x

]
dx−

∫ 1

0

(
P ′(w0)− P ′(A)− j2

0

w4
0

+
j2
0

A2

)
ψ2

xdx

≤− 1
4
ε2

∫ 1

0
ψ2

xxdx− min
x∈[0,1]

(
P ′(A)− j2

0

A2

) ∫

E
ψ2

xdx−
∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
ψ2

xdx

−
∫ 1

0

(
P ′(w2

0)− P ′(A)− j2
0

w4
0

+
j2
0

A2

)
ψ2

xdx

≤− (b0 + A0)
∫ 1

0
ψ2

xxdx−
∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
ψ2

xdx + Cδ0

∫ 1

0
ψ2

xxdx, (2.35)

where A0 is given by (1.26) and

b0 =
1
4
(1− κ)ε2.

Notice that A0 > 0 by assumption (1.25).
Elementary computations, employing (2.15) and (2.16), lead to

(
j0

w2
0

η

)

xx

=− 2
j0

w2
0

[(w0 + ψ)ψxt + (w0 + ψ)xψt]

− 4
(

j0

w2
0

)

x

(w0 + ψ)ψt + η

(
j0

w2
0

)

xx

. (2.36)

With this identity, Cauchy’s inequality, integration by parts, (2.18) and (2.23), we have

|I5| ≤C(δT + δ0)
∫ 1

0
(ψ2 + ψ2

t + η2)dx +
∫ 1

0

∣∣∣∣
2j0

w2
0

ψxψt

∣∣∣∣ dx

≤C(δT + δ0)
∫ 1

0
(ψ2

t + ψ2 + ψ2
xxx)dx + a0

∫ 1

0
ψ2

t dx +
1
4
b0

∫ 1

0
ψ2

xxdx

+ C exp{−c0t}
∫ 1

0
η2
0dx,

where

a0 = 4j2
0/min

[0,1]
w4

0b0 =
16j2

0

(1− κ)ε2 min[0,1] w
4
0

. (2.37)

In view of
|g1(x, t)| ≤ C(|ψxx|+ |ψ|+ |ψt|+ |ψx|+ |ex|), (2.38)
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Cauchy’s inequality, (2.17) and (2.23), we infer

|I6| ≤ C(δT + δ0)
∫ 1

0
[ψ2

xx + ψ2 + ψ2
t ]dx.

By (2.16), (2.15), (2.18) and (2.23), we obtain, after a tedious calculation, that

|g2(x, t)| ≤ C(δT + δ0)(|ψxx|+ |ψx|+ |ψ|+ |ψt|+ |η|). (2.40)

From the above estimate, (2.19) and Cauchy’s inequality follows

|I7| ≤C(δT + δ0)
∫ 1

0
[ψ2 + ψ2

xx + ψ2
xxx + ψ2

t ]dx + C exp{−c0t}
∫ 1

0
η2
0dx.

Substituting the estimates for I4, . . . , I7 into (2.34), we conclude

d

dt

(∫ 1

0

[
1
2
ψ2 + ψtψ

]
dx

)
− (1 + a0)

∫ 1

0
ψ2

t dx

+
1
2

∫ 1

0
(2w2

0 + 3w0ψ + φ0xx + ψ2)ψ2dxdx

+ (A0 +
3
4
b0)

∫ 1

0
ψ2

xxdx +
∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
ψ2

xdx

≤C(δT + δ0)
∫ 1

0
(ψ2 + ψ2

xx + ψ2
xxx + ψ2

t )dx + C exp{−c0t}
∫ 1

0
η2
0dx. (2.41)

Multiply now (2.6) by ψt, integrate the resulting equation over (0, 1) and integrate by
parts, noticing ψt(0, t) = ψt(1, t) = 0:

1
2

d

dt

(∫ 1

0

[
ψ2

t +
(

w2
0 +

3
2
w0ψ +

1
2
φ0xx +

1
4
ψ2

)
ψ2

]
dx

)

+
1
2

d

dt

(∫ 1

0

[
1
4
ε2ψ2

xx +
(

P ′(w2
0)−

j2
0

w4
0

)
ψ2

x

]
dx

)
+

∫ 1

0
ψ2

t dx

=
∫ 1

0
w−1

0 ψt

(
j0

w2
0

η

)

xx

dx +
∫ 1

0
g1ψtdx +

∫ 1

0
g2ψtdx

∆=I8 + I9 + I10. (2.42)

Employing (2.36), integration by parts and (2.18), we estimate

I8 ≤−
∫ 1

0

2j0

w2
0

ψtψxtdx + C(δT + δ0)
∫ 1

0
(ψ2 + ψ2

t + η2)dx

≤C(δT + δ0)
∫ 1

0
(ψ2

t + ψ2 + ψ2
xxx)dx + C exp{−c0t}

∫ 1

0
η2
0dx.

In view of (2.38), (2.40), (2.17), (2.18), and (2.20), the integrals I9 and I10 can be bounded
as follows:

|I9| ≤C(δT + δ0)
∫ 1

0
(ψ2

xx + ψ2 + ψ2
t )dx,
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|I10| ≤C(δT + δ0)
∫ 1

0
(ψ2 + ψ2

xx + ψ2
xxx + ψ2

t )dx + C exp{−c0t}
∫ 1

0
η2
0dx.

Substitution of the above three estimates into (2.42) yields

1
2

d

dt

(∫ 1

0

[
ψ2

t +
(

w2
0 +

3
2
w0ψ +

1
2
φ0xx +

1
4
ψ2

)
ψ2

]
dx

)

+
1
2

d

dt

(∫ 1

0

[
1
4
ε2ψ2

xx +
(

P ′(w2
0)−

j2
0

w4
0

)
ψ2

x

]
dx

)
+

∫ 1

0
ψ2

t dx

≤C(δT + δ0)
∫ 1

0
(ψ2 + ψ2

xx + ψ2
xxx + ψ2

t )dx + C exp{−c0t}
∫ 1

0
η2
0dx. (2.43)

We add (2.41) and (2.43), multiplied by 2(1 + a0) (here we recall that a0 is denoted
by (2.37)), to obtain

d

dt

(∫ 1

0

[
1
2
ψ2 + ψtψ + (1 + a0)ψ2

t

]
dx

)

+
d

dt

(∫ 1

0
(1 + a0)

[
w2

0 +
3
2
w0ψ +

1
2
φ0xx +

1
4
ψ2

]
ψ2dx

)

+
d

dt

(∫ 1

0
(1 + a0)

[
1
4
ε2ψ2

xx +
(

P ′(w2
0)−

j2
0

w4
0

)
ψ2

x

]
dx

)

+
1
2

∫ 1

0

[
(2w2

0 + 3w0ψ + φ0xx + ψ2)ψ2 + 2(1 + a0)ψ2
t

]
dx

+
(

A0 +
3
4
b0

) ∫ 1

0
ψ2

xxdx +
∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
ψ2

xdx

≤C(δT + δ0)
∫ 1

0
(ψ2 + ψ2

xx + ψ2
xxx + ψ2

t )dx + C exp{−c0t}
∫ 1

0
η2
0dx. (2.44)

Applying Grownwall Lemma to (2.44), we can estimate the H2-norm of ψ and L2-norm
of ψt in terms of the initial data and ‖ψxxx‖. However, the differential inequality for ψ

and ψt is enough for the following considerations.
Step 2: differential inequality for ψtt in L2. The starting point of the following

estimates is (2.6), differentiated with respect to t:

ψttt + ψtt +
1
4
ε2ψxxxxt +

(
w2

0 + 3w0ψ +
1
2
φ0xx +

3
2
ψ2

)
ψt

− 1
w0

(
j0

w2
0

ηt

)

xx

−
[(

P ′(w2
0)−

j2
0

w4
0

)
ψxt

]

x

= g1t(x, t) + g2t(x, t). (2.45)

This equation holds pointwise almost everywhere in (0, 1)×(0, T ) since ψ ∈ C0([0, T ];H6)∩
H3(0, T ; L2) (see the proof of Theorem 1.1). We multiply (2.45) first by ψt, integrate
the resulting equation over (0, 1) and integrate by parts, using the boundary conditions
ψt(0, t) = ψt(1, t) = ψxt(0, t) = ψxt(1, t) = 0 and (2.7):

d

dt

(∫ 1

0

[
1
2
ψ2

t + ψtψtt

]
dx

)
−

∫ 1

0
ψ2

ttdx +
∫ 1

0

[
w2

0 + 3w0ψ +
1
2
φ0xx +

3
2
ψ2

]
ψ2

t dx
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=−
∫ 1

0

[
1
4
ε2ψ2

xxt +
(

P ′(w2
0)−

j2
0

w4
0

)
ψ2

xt

]
dx +

∫ 1

0

1
w0

ψt

(
j0

w2
0

ηt

)

xx

dx

+
∫ 1

0
g1tψtdx +

∫ 1

0
g2tψtdx

∆=I12 + I13 + I14 + I15. (2.46)

Applying an argument similar to (2.35), it follows

I12 ≤− (A0 + b0)
∫ 1

0
ψ2

xxtdx−
∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
ψ2

xtdx + Cδ0

∫ 1

0
ψ2

xxtdx,

where we have used ∫

E
ψ2

xtdx ≤
∫ 1

0
ψ2

xtdx ≤
∫ 1

0
ψ2

xxtdx, (2.47)

based on the facts ψxt(0, t) = ψxt(1, t) = 0. By (2.15), (2.20), and (2.47), we have, after
integration by parts,

I13 =− 2
∫ 1

0

j0

w3
0

ψt((ψ + w0)ψxtt + 2ψtψxt + (w0 + ψ)xψtt)dx

− 4
∫ 1

0
w−1

0

(
j0

w2
0

)

x

ψt(ψ2
t + (w0 + ψ)ψtt)dx +

∫ 1

0
w−1

0

(
j0

w2
0

)

xx

ψtηtdx

≤C(δT + δ0)
∫ 1

0
(ψ2

tt + ψ2
xt + ψ2

t + η2
t )dx

+ 2
∫ 1

0

∣∣∣∣
(

j0(w0 + ψ)
w3

0

)

x

ψtψtt

∣∣∣∣ dx + 2
∫ 1

0

∣∣∣∣
j0

w3
0

(w0 + ψ)ψxtψtt

∣∣∣∣ dx

≤C(δT + δ0)
∫ 1

0
(ψ2

tt + ψ2
t + ψ2

xxx + ψ2
xxt)dx

+ C exp{−c0t}
∫ 1

0
η2
0dx + a0

∫ 1

0
ψ2

ttdx +
1
4
b0

∫ 1

0
ψ2

xxtdx.

Elementary computations yield the estimate

|g1t(x, t)| ≤ C(δT + δ0)(|ψxxt|+ |ψtt|+ |ψt|+ |ψxt|+ |ext|), (2.48)

which implies, in view of Cauchy’s inequality, (2.21) and (2.47), that

|I14| ≤ C(δT + δ0)
∫ 1

0
(ψ2

xxt + ψ2
t + ψ2

tt)dx.

After a tedious computation, it follows from (2.16) that

|g2t(x, t)| ≤C(δT + δ0)(|ψxxt|+ |ψtt|+ |ψxt|+ |ψt|+ |ηt|)

+
(

j0 + η

(w0 + ψ)3
− j0

w3
0

)
ηxxt
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≤C(δT + δ0)(|ψxxt|+ |ψxx|+ |ψtt|+ |ψxt|+ |ψt|+ |ηt|)

− 2(w0 + ψ)
(

j0 + η

(w0 + ψ)3
− j0

w3
0

)
ψxtt, (2.50)

where we have used the equation

4ψxxψt + 2(w0 + ψ)ψxtt + 2(w0 + ψ)xψtt + ηxxt = 0. (2.51)

Using (2.50), (2.18), (2.47), (2.24), and the fact ψt(0, t) = ψt(1, t) = 0, we can estimate
I15, after integration by parts, as follows:

I15 ≤(δT + δ0)
∫ 1

0
(ψ2

xxt + ψ2
tt + ψ2

t + ψ2 + ψ2
xx + ψ2

xxx)dx

+ 2
∫ 1

0
(w0 + ψ)

(
j0 + η

(w0 + ψ)3
− j0

w3
0

)
ψxtψttdx

+ 2
∫ 1

0

(
(w0 + ψ)

[
j0 + η

(w0 + ψ)3
− j0

w3
0

])

x

ψtψttdx

≤C(δT + δ0)
∫ 1

0
(ψ2

xxt + ψ2
tt + ψ2

t + ψ2 + ψ2
xx + ψ2

xxx)dx.

Substituting the above estimates for I12, . . . , I15 into (2.46), we conclude

d

dt

(∫ 1

0

[
1
2
ψ2

t + ψtψtt

]
dx

)
− (1 + a0)

∫ 1

0
ψ2

ttdx

+
∫ 1

0

[
w2

0 + 3w0ψ +
1
2
φ0xx +

3
2
ψ2

]
ψ2

t dx

+
(

A0 +
3
4
b0

)∫ 1

0
ψ2

xxtdx +
∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
ψ2

xtdx

≤C(δT + δ0)
∫ 1

0
(ψ2

t + ψ2 + ψ2
tt + ψ2

xx + ψ2
xxt + ψ2

xxx)dx

+ C exp{−c0t}
∫ 1

0
η2
0dx. (2.52)

The next step is to multiply (2.45) by ψtt, to integrate the resulting equation over
(0, 1) and to integrate by parts, using ψtt(0, t) = ψtt(1, t) = 0, which yields

1
2

d

dt

(∫ 1

0

[
ψ2

tt +
(

w2
0 + 3w0ψ +

1
2
φ0xx +

3
2
ψ2

)
ψ2

t

]
dx

)

+
1
2

d

dt

(∫ 1

0

[
1
4
ε2ψ2

xxt +
(

P ′(w2
0)−

j2
0

w4
0

)
ψ2

xt

]
dx

)

− 3
2

∫ 1

0
(w0 + ψ)ψ3

t dx +
∫ 1

0
ψ2

ttdx

=
∫ 1

0
w−1

0 ψtt

(
j0

w2
0

ηt

)

xx

dx +
∫ 1

0
g1tψttdx +

∫ 1

0
g2tψttdx
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∆= I16 + I17 + I18. (2.53)

By (2.15), (2.51), (2.20), (2.23), (2.47), and integration by parts, we have

I16 =− 2
∫ 1

0

j0

w3
0

(w0 + ψ)ψttψxttdx− 2
∫ 1

0

j0

w3
0

(2ψtψxt + (w0 + ψ)xψtt)dx

− 4
∫ 1

0

1
w0

(
j0

w2
0

)

x

ψtt(ψ2
t + (w0 + ψ)ψtt)dx +

∫ 1

0

1
w0

(
j0

w2
0

)

xx

ψttηtdx

≤C(δT + δ0)
∫ 1

0
(ψ2

tt + ψ2
t + ψ2 + ψ2

xxt + ψ2
xxx)dx + C exp{−c0t}

∫ 1

0
η2
0dx,

From (2.48), (2.17) and (2.47) it follows

|I17| ≤ C(δT + δ0)
∫ 1

0
[ψ2

xxt + ψ2
t + ψ2

tt]dx.

Finally, in view of (2.50), (2.18), (2.20) and integration by parts, it holds

I18 ≤(δT + δ0)
∫ 1

0
(ψ2

xxt + ψ2
tt + ψ2

t + ψ2 + ψ2
xxx)dx

− 2
∫ 1

0
(w0 + ψ)

(
j0 + η

(w0 + ψ)3
− j0

w3
0

)
ψttψxttdx

≤(δT + δ0)
∫ 1

0
[ψ2

xxt + ψ2
tt + ψ2

t + ψ2 + ψ2
xxx]dx.

Substituting the estimates for the integrals I16, I17 and I18 into (2.53) gives

1
2

d

dt

(∫ 1

0

[
ψ2

tt +
(

w2
0 + 3w0ψ +

1
2
φ0xx +

3
2
ψ2

)
ψ2

t

]
dx

)

+
1
2

d

dt

(∫ 1

0

[
1
4
ε2ψ2

xxt +
(

P ′(w2
0)−

j2
0

w4
0

)
ψ2

xt

]
dx

)

− 3
2

∫ 1

0
(w0 + ψ)ψ3

t dx +
∫ 1

0
ψ2

ttdx

≤C(δT + δ0)
∫ 1

0
(ψ2

xxt + ψ2
tt + ψ2

t + ψ2 + ψ2
xx + ψ2

xxx)dx

+ C exp{−c0t}
∫ 1

0
η2
0dx. (2.55)

Now we add the inequalities (2.52) and (2.55), multiplied by 2(1 + a0), to infer

d

dt

(∫ 1

0

[
1
2
ψ2

t + ψtψtt + (1 + a0)ψ2
tt

]
dx

)

+ (1 + a0)
d

dt

(∫ 1

0

[
w2

0 + 3w0ψ +
1
2
φ0xx +

3
2
ψ2

]
ψ2

t dx

)
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+ (1 + a0)
d

dt

(∫ 1

0

[
1
4
ε2ψ2

xxt +
(

P ′(w2
0)−

j2
0

w4
0

)
ψ2

xt

]
dx

)

+ (1 + a0)
∫ 1

0
ψ2

ttdx +
∫ 1

0

[
w2

0 + 3w0ψ +
1
2
φ0xx +

3
2
ψ2

]
ψ2

t dx

+
(

A0 +
3
4
b0

) ∫ 1

0
ψ2

xxtdx +
∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
ψ2

xtdx

≤C(δT + δ0)
∫ 1

0
(ψ2

t + ψ2
tt + ψ2

xx + ψ2
xxt + ψ2

xxx + ψ2)dx

+ exp{−c0t}
∫ 1

0
η2
0dx. (2.56)

Step 3: combination of the estimates for ψ, ψt and ψtt. We combine the
estimates (2.44) and (2.56) and obtain for some constant β1 > 0, using (2.21),

d

dt

(∫ 1

0

[
1
2
(ψ2 + ψ2

t ) + ψt(ψ + ψtt) + (1 + a0)(ψ2
t + ψ2

tt)
]

dx

)

+ (1 + a0)
d

dt

(∫ 1

0

[
w2

0 +
3
2
w0ψ +

1
2
φ0xx +

1
4
ψ2

]
ψ2dx

)

+ (1 + a0)
d

dt

(∫ 1

0

[
w2

0 + 3w0ψ +
1
2
φ0xx +

3
2
ψ2

]
ψ2

t dx

)

+ (1 + a0)
d

dt

(∫ 1

0

[
1
4
ε2(ψ2

xx + ψ2
xxt) +

(
P ′(w2

0)−
j2
0

w4
0

)
(ψ2

x + ψ2
xt)

]
dx

)

+ β1

∫ 1

0
[ψ2 + ψ2

t + ψ2
t + ψ2

tt + ψ2
xxt + ψ2

xx]dx

+ β1

∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
(ψ2

x + ψ2
xt)dx

≤C exp{−c0t}
∫ 1

0
η2
0dx, (2.57)

provided that δT + δ0 is small enough.
There exist constants β2, β3 > 0 such that

β2

∫ 1

0

[
ψ2 + ψ2

t + ψ2
xt + ψ2

tt + ψ2
xxt + ψ2

xx

]
dx

+ β2

∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
(ψ2

x + ψ2
xt)dx

≤
∫ 1

0

[
1
2
(ψ2 + ψ2

t ) + ψt(ψ + ψtt) + (1 + a0)(ψ2
t + ψ2

tt)
]

dx

+ (1 + a0)
∫ 1

0

[
w2

0 +
3
2
w0ψ +

1
2
φ0xx +

1
4
ψ2

]
ψ2dx

+ (1 + a0)
∫ 1

0

[
w2

0 + 3w0ψ +
1
2
φ0xx +

3
2
ψ2

]
ψ2

t dx
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+ (1 + a0)
∫ 1

0

[
1
4
ε2(ψ2

xx + ψ2
xxt) +

(
P ′(w2

0)−
j2
0

w4
0

)
(ψ2

x + ψ2
xt)

]
dx

≤β−1
3 β1

∫ 1

0

[
ψ2 + ψ2

t + ψ2
xt + ψ2

tt + ψ2
xxt + ψ2

xx

]
dx

+ β−1
3 β1

∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
(ψ2

x + ψ2
xt)dx,

Thus, applying Gronwall’s inequality to (2.57), we obtain finally
∫ 1

0

[
ψ2 + ψ2

t + ψ2
xt + ψ2

tt + ψ2
xxt + ψ2

xx

]
dx +

∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
(ψ2

x + ψ2
xt)dx

≤C(‖ψ0‖2
4 + ‖η0‖2

3) exp{−β3t}, (2.58)

provided that δT + δ0 is small enough.
The combination of (2.58), (2.17), (2.21) and (2.7) gives the assertion (2.33). Thus,

the lemma is proved.

We also obtain bounds for higher-order estimates for ψ.

Lemma 2.3 It holds for (ψ, η, e) ∈ X(T ) and 0 < t < T

‖∂4
xψ(t)‖2

2 + ‖ψxtt(t)‖2
1 + ‖ψttt(t)‖2 + ‖e(t)‖2

4 +
∫

(0,1)\E

(
P ′(A)− j2

0

A2

)
ψ2

xttdx

≤C(‖(ψ0‖2
6 + ‖η0‖2

5) exp{−β4t}, (2.59)

provided that δT + δ0 is small enough. Here, C, β4 > 0 are constants independent of t.

Proof: For the proof of the lemma take the time derivative of (2.45) and estimate
similarly as in Lemmas 2.1 and 2.2. As the estimates are analogous to those of the proofs
of Lemmas 2.1–2.2, we omit the details.

Proof of Theorem 1.5. By Theorem 1.1, there exists a solution (w, j, φ) of the
IBVP (1.14)–(1.19) for t ∈ [0, T∗]. With the help of Lemmas 2.1–2.3, we infer that the
local solution (w, j, φ) of the IBVP (1.14)–(1.19) satisfies, for t ∈ [0, T∗],

‖(w − w0, j − j0, φ− φ0)(t)‖2
H6×H5×H4 ≤ C(‖ψ0‖2

6 + ‖η0‖2
5) exp{−Λ0t}, (2.60)

where C, Λ0 > 0 are constants independent of t. Choosing the initial data ‖ψ0‖6 + ‖η0‖5

so small that
C(‖ψ0‖2

6 + ‖η0‖2
5) < δT∗

we conclude first, by the Sobolv embedding theorem and (2.60), that w > 0 in [0, 1]×[0, T∗],
and second, by the usual continuity argument, that (w, j, φ) exists globally in time and
satisfies (1.29).
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3 Proof of Theorem 1.1

The idea of the proof of Theorem 1.1 is to linearize the equations (1.14)–(1.16) around the
initial state and to construct a sequence of approximate solutions of the linearized problem
converging to a solution of the original problem. First we need to study the regularity
properties of a certain semilinear fourth-order wave equation.

3.1 A semilinear fourth-order wave equation

Consider the two Hilbert spaces H2
0 and L2 on (0, 1), endowed with the scalar products

〈·, ·〉 and (·, ·) and corresponding norms | · |H2
0

= | · |2 and ‖ · ‖, respectively. Furthermore,
we consider the following initial-value problem on L2:

u′′ + u′ + νAu + u + Lu′ = F (t), t > 0, (3.1)

u(0) = u0, u′(0) = u1, (3.2)

where the primes denote derivatives with respect to time, τ, ν > 0 are constants, A = ∂4
x

is an operator defined on

D(A) = H2
0 ∩H4 = {u ∈ H4; u|x=0,1 = ux|x=0,1 = 0}, (3.3)

and the operators L and F are given by

〈Lu, v〉 =
∫ 1

0
b(x, t)uxvdx, u, v ∈ H2

0 ,

(F (t), v) =
∫ 1

0
f(x, t)vdx, v ∈ L2,

where b, f : [0, 1]× [0, T ] → R are measurable functions.
Related to the operator A, we introduce the coercive, continuous, symmetric bilinear

form a(u, v)

a(u, v) = ν

∫ 1

0
uxxvxxdx ∀ u, v ∈ H2

0 .

There exist a complete orthonormal family of eigenvectors {ri}i∈N of L2 and a family of
eigenvalues {µi}i∈N such that 0 < µ1 ≤ µ2 ≤ · · · and µi → ∞ as i → ∞. The family
{ri}i∈N is also orthogonal for a(u, v) on H2

0 , i.e.

(ri, rj) = δij , a(ri, rj) = ν〈Ari, rj〉 = νδij ∀ i, j.

Using the Faedo-Galerkin method [26, 28], it is possible to prove the existence of
solutions of (3.1)-(3.2). The result is summarized in the following theorem.
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Theorem 3.1 Let T0 > 0 and assume that

F ∈ H1(0, T0; L2), b ∈ C1([0, T0]; H2) ∩W 2,∞(0, T0; H1). (3.4)

Then, if u0 ∈ H4 ∩H2
0 and u1 ∈ H2

0 , there exists a solution of (3.1)–(3.2) satisfying

u ∈ C([0, T0]; H4 ∩H2
0 ) ∩ C1([0, T0]; H2

0 ) ∩ C2([0, T0]; L2). (3.5)

Moreover, assume additionally that

F ∈ H2(0, T0; L2) ∩ C([0, T0]; H2).

Then, if u0 ∈ H6 ∩H2
0 and u1 ∈ H4 ∩H2

0 satisfy νAu0 + L(u1)− F (0) ∈ H2
0 , it holds

u ∈ Ci([0, T0];H6−2i ∩H2
0 ) ∩ C3([0, T0];L2), i = 0, 1, 2. (3.6)

Proof: The existence of solutions of (3.1)–(3.2) and the regularity property (3.5) can be
shown by applying the Faedo-Galerkin method as in [19]. The regularity property (3.6)
follows from (3.5) by considering the problem for the new variable v = u′. As the proof is
standard, we omit the details.

3.2 Local existence

In this section we prove Theorem 1.1. For simplicity, we set τ = 1. We linearize the
equations (1.14)–(1.16) around the initial state (w1, j1, φ1) where φ1 solves the Poisson
equation (1.16) and (1.19) with w replaced by w1, and prove the local-in-time existence
for the perturbation (ψ, η, e) = (w−w1, j−j1, φ−φ1). For this, we reformulate the original
initial-boundary value problem (1.14)–(1.19). It is sufficient to carry out the reformulation
for the equations (1.14), (1.16) and (2.1) because of (2.15). For given Up = (ψp, ηp, ep)
we obtain the following linearized problems for Up+1 = (ψp+1, ηp+1, ep+1), p ∈ N, writing
“∂x” for the spatial derivative and “ ′ ” for the time derivative:

{
η′p+1 + ηp+1 = g3(x, Up),

ηp+1(x, 0) = 0,
(3.7)





ψ′′p+1 + ψ′p+1 + ν∂4
xψp+1 + ψp+1 + k(x,Up)∂xψ′p+1 = g4(x, Up),

ψp+1(x, 0) = 0, ψ′p+1(x, 0) = θ1(x) := −∂xj1

2w1
,

ψp+1(0, t) = ψp+1(1, t) = ∂xψp+1(0, t) = ∂xψp+1(1, t) = 0,

(3.8)

{
∂2

xep+1 = (2w1 + ψp)ψp,

ep+1(0, t) = ep+1(1, t) = 0,
(3.9)



24 Quantum Euler-Poisson Systems

where ν = 1
4ε2 and

g3(x,Up) =
4(j1 + ηp)
w1 + ψp

ψ′p − (j1 + ηp)2
[

1
(w1 + ψp)2

]

x

− P ((w1 + ψp)2)x − j1

+ (w1 + ψp)2(φ1 + ep)x +
1
2
ε2(w1 + ψp)2

[
(w1 + ψp)xx

w1 + ψp

]

x

,

k(x,Up) =
2(j1 + ηp)
(w1 + ψp)2

,

g4(x,Up) =− 1
2(w1 + ψp)

((w1 + ψp)2(φ1 + ep)x)x +
1

2(w1 + ψp)
P ((w1 + ψp)2)xx

− 1
4
ε2w1xxxx +

1
4
ε2 (w1 + ψp)2xx

w1 + ψp
− ψp +

3(ψ′p)2

w1 + ψp

+
(j1 + ηp)2

2(w1 + ψp)

[
1

(w1 + ψp)2

]

xx

− 3
[

1
(w1 + ψp)2

]

x

(j1 + ηp)ψ′p. (3.10)

We apply an induction argument to prove the existence of solutions of (3.7)–(3.9).

Lemma 3.2 Under the assumptions of Theorem 1.1, i.e., P ∈ C4(0,∞), C ∈ H2, (w1, j1)
∈ H6 ×H5 with w1 > 0 in (0, 1) and, for some α ∈ [(1 + 2

√
2ε)−1, 1),

‖v1‖C1([0,1]) <
(1− α)w∗
8
√

2‖w1‖1

(3.11)

with
w∗ = min

x∈[0,1]
w1(x), (3.12)

there exists a sequence {U i}∞i=1 of solutions of (3.7)–(3.9) in the time interval t ∈ [0, T∗]
for some T∗ > 0 which is independent of i, satisfying the regularity properties

{
ηi ∈ C1([0, T∗]; H3) ∩ C2([0, T∗]; H1), ei ∈ C1([0, T∗];H4 ∩H1

0 ),

ψi ∈ C l([0, T∗]; H6−2l ∩H2
0 ) ∩ C3([0, T∗]; L2), l = 0, 1, 2, i ∈ N,

(3.13)

and the uniform bounds





‖η′i(t)‖2
3 + ‖η′′i (t)‖2

1 + ‖(ei, e
′
i)(t)‖2

4 ≤ M0,

‖(ψi, ψ
′
i, ψ

′′
i , ψ′′′i )(t)‖2

H6×H4×H2×L2 ≤ M0,

‖ηi(t)‖2
3 ≤ 1, ‖∂2

xψi(t)‖2 ≤ α2w2
∗,

i ≥ 1, t ∈ [0, T∗], (3.14)

where M0 > 0 is a constant independent of U i (i ≥ 1) and T∗.

Proof: Step 1: solution of (3.7)–(3.9) for p ≥ 1. Obviously, U1 = (0, 0, 0) satisfies
(3.13)–(3.14). Starting with U1 = (0, 0, 0), we prove the existence of a solution U2 =
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(ψ2, η2, e2) of (3.7)–(3.9) satisfying (3.13)–(3.14). The functions g3(x,U1), g4(x,U1) and
k(x,U1) only depend on the initial state (w1, j1, φ1) and satisfy

g3(x,U1) =: g̃3(x) ∈ H3, g4(x, U1) =: g̃4(x) ∈ H2, k(x,U1) =: k̃(x) ∈ H3,

∂tg3 = ∂tg4 = ∂tk = 0, ‖g̃3‖2
3 + ‖g̃4‖2

2 + ‖k̃‖2
3 ≤ a0(I0 + 1), (3.15)

where a0 > 0 is some constant and

I0 = ‖(w1 −
√
C)‖2 + ‖w1x‖2

5 + ‖j1‖2
5. (3.16)

The existence of a solution U2 = (ψ2, η2, e2) of the linear system (3.7)–(3.9) follows from
the theory of ordinary differential equations, applied to (3.7), Theorem 3.1 with f(x, t) =
g̃4(x) and b(x, t) = k̃(x), applied to (3.8), and elliptic theory, applied to (3.9). The solution
U2 exists on any time interval [0, T ], T > 0, and satisfies (3.13) with T∗ = T and the first
two inequalities of (3.14) with i = 2.

We show in the following that U2 satisfies the last two inequalities of (3.14) for t ∈
[0, T1], where T1 > 0 is given by

T1 = min

{
ln 2

2 + a0(I0 + 1)
,

να2w2∗ − 4‖v1‖2
C1([0,1])‖w1‖2

1

2a0(I0 + 1)
,

1
a0(I0 + 1)

}
. (3.17)

We recall that a0 > 0 is a constant and I0 and w∗ are given by (3.16) and (3.12), respec-
tively. It holds

να2w2
∗ − 4‖v1‖2

C1([0,1])‖w1‖2
1 > 0, (3.18)

since (3.11) implies

4‖v1‖2
C1([0,1])‖w1‖2

1 <
(1− α)2w2∗

32
≤ να2w2

∗.

From (3.7) we obtain by integrating

η2(t) = g̃3(x)
∫ t

0
exp{−(t− s)}ds, t ∈ [0, T1],

and hence, in view of (3.17),

‖η2(t)‖2
3 ≤ T 2

1 ‖g̃3‖2
3 ≤ 1, t ∈ [0, T1]. (3.19)

Multiplying the differential equation in (3.8) by ψ′2, integrating the resulting equation
over (0, 1)× (0, t) for t ∈ [0, T1] and integrating by parts gives

‖ψ2xx(t)‖2 ≤1
ν

(‖θ1‖2 + a0T1(I0 + 1)
)
eT1(2+a0(I0+1))

≤2
ν

(
2‖v1‖2

C1([0,1])‖w1‖2
1 + a0T1(I0 + 1)

)

≤α2w2
∗, (3.20)
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where we have used

‖θ1‖2 =
∥∥∥∥w1xv1 +

1
2
w1v1x

∥∥∥∥
2

≤ 2‖v1‖2
C1([0,1])‖w1‖2

1. (3.21)

This proves the last two bounds in (3.14). Moreover, by the Sobolev embedding theorem,
it follows from (3.20) that

‖ψ2(t)‖2
1 ≤ 2α2w2

∗, t ∈ [0, T1]. (3.22)

Now, assume that there exist solutions {U i}p
i=1 (p ≥ 2) of (3.7)–(3.9) on the time

interval [0, T1] where T1 is given by (3.17), satisfying (3.13)–(3.14). As above we obtain,
for given Up, the existence of a solution Up+1 = (ψp+1, ηp+1, ep+1) of (3.7)–(3.9) in the
interval [0, T1], satisfying

ηp+1 ∈ C1([0, T1]; H3) ∩ C2([0, T1]; H1), ep+1 ∈ C1([0, T1]; H4 ∩H1
0 ),

ψp+1 ∈ C l([0, T1]; H6−2l ∩H2
0 ) ∩ C3([0, T1]; L2), l = 0, 1, 2.

We prove that there exist constants T∗ ∈ (0, T1] and Ki > a0 (i = 1, 2, 3, 5, 6, 7) indepen-
dent of {U i}p

i=1, such that if Up satisfies on [0, T∗]

‖∂2
xψp(t)‖2 ≤ α2w2

∗, (3.23)

‖(ψ′′p , ψ′p)(t)‖2
2 + ‖ψ′′′p (t)‖2 ≤ K0, (3.24)

‖∂3
xψ′p(t)‖2

1 ≤ K1, ‖∂3
xψp(t)‖2

1 ≤ K2, ‖∂5
xψp(t)‖2

1 ≤ K3, (3.25)

‖ηp(t)‖2
3 ≤ 1, ‖η′p(t)‖2 ≤ K5, ‖∂xη′p(t)‖2

2 ≤ K6, ‖η′′p(t)‖2
1 ≤ K7, (3.26)

then Up+1 also satisfies on [0, T∗]

‖∂2
xψp+1(t)‖2

2 ≤ α2w2
∗, (3.27)

‖(ψ′′p+1, ψ
′
p+1)(t)‖2

2 + ‖ψ′′′p+1(t)‖2 ≤ K0, (3.28)

‖∂3
xψ′p+1(t)‖2

1 ≤ K1, ‖∂3
xψp+1(t)‖2

1 ≤ K2, ‖∂5
xψp+1(t)‖2

1 ≤ K3, (3.29)

‖ηp+1(t)‖2
3 ≤ 1, ‖η′p+1(t)‖2 ≤ K5, ‖∂xη′p+1(t)‖2

2 ≤ K6, ‖η′′p+1(t)‖2
1 ≤ K7. (3.30)

Notice that it follows from (3.23) and (3.27), employing the boundary conditions in (3.8)
and Poincaré’s inequality,

‖ψp(t)‖2
1 ≤ 2α2w2

∗, ‖ψp+1(t)‖2
1 ≤ 2α2w2

∗, t ∈ [0, T∗]. (3.31)

Step 2: estimates for g3, g4, and k. Let Up satisfy (3.23)–(3.26). Then a direct
computation shows the following estimates for g3(x,Up) and g4(x,Up), for t ∈ [0, T∗],

‖g3(·, Up)(t)‖2
1 ≤N(I0 + 1 + K0 + K2)5, (3.32)

‖g3x(·, Up)(t)‖2
2 ≤N(I0 + 1 + K0 + K1 + K2 + K3)7, (3.33)
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‖g′3(·, Up)(t)‖2
1 ≤N(I0 + 1 + K0 + K1 + K2 + K3 + K5 + K6)6, (3.34)

‖g4(·, Up)(t)‖2 ≤N(I0 + 1 + ‖ψp(t)‖2
4 + ‖ψ′p(t)‖2

1)
3

+ 16ν2a1‖∂2
xψp(t)‖2‖∂4

xψp(t)‖2 (3.35)

≤N(I0 + 1 + K0 + K2)3, (3.36)

‖g4x(·, Up)(t)‖2
1 ≤N(I0 + 1 + K0 + K2)5, (3.37)

‖g′4(·, Up)(t)‖2 ≤N(I0 + 1 + K0 + K2 + K5)4, (3.38)

‖g′′4(·, Up)(t)‖2 ≤N(I0 + 1 + K0 + K1 + K2 + K5 + K7)5, (3.39)

where
a1 = max

x∈[0,1]
(w1 + ψp)−2 = (1− α)−2w−2

∗ , (3.40)

and the estimates for k(x,Up) and ep(x, t), for t ∈ [0, T∗],

‖k(·, Up)(t)‖2
2 ≤N(I0 + 1)3, (3.41)

‖k′(·, Up)(t)‖2
2 ≤N(I0 + 1 + K0 + K5 + K6)2, (3.42)

‖k′′(·, Up)(t)‖2
1 ≤N(I0 + 1 + K0 + K5 + K6 + K7)3, (3.43)

‖ep‖2
4 + ‖(e′p, e′′p)‖2

2 ≤N(I0 + 1 + K0 + K2), (3.44)

where N > 1 is a constant independent of Ki (i = 1, 2, 3, 5, 6, 7).

Step 3: estimates for ηp+1. Integration of (3.7) yields

ηp+1(x, t) =
∫ t

0
exp{−(t− s)}g3(x,U1)(s)ds, 0 ≤ t ≤ T∗ ≤ T1, x ∈ [0, 1], (3.45)

and
ηp+1 ∈ C1([0, T1];H3) ∩ C2([0, T∗];H1). (3.46)

From (3.32)–(3.34) we obtain the estimates

‖ηp+1(t)‖2 ≤T 2
∗ ‖g3(·, Up)‖2 ≤ T 2

∗N(I0 + 1 + K0 + K2)5,

‖∂xηp+1(t)‖2
2 ≤T 2

∗ ‖g3x(·, Up)‖2
2 ≤ T 2

∗N(I0 + 1 + K0 + K1 + K2 + K3)7,

‖η′p+1(t)‖2 ≤2(T 2
1 + 1)‖g3(·, Up)‖2 ≤ 2N(T 2

1 + 1)(I0 + 1 + K0 + K2)5,

‖∂xη′p+1(t)‖2
2 ≤2(T 2

1 + 1)‖g3x(·, Up)‖2
2

≤2N(T 2
1 + 1)(I0 + 1 + K0 + K1 + K2 + K3)7,

‖η′′p+1(t)‖1 ≤4N(T 2
1 + 1)(I0 + 1 + K0 + K1 + K2 + K3)7

+ 2N(I0 + 1 + K0 + K1 + K2 + K3 + K5 + K6)6.

Thus, ηp+1 satisfies (3.30) if

K5 =2N(T 2
1 + 1)(I0 + 1 + K0 + K2)5, (3.47)

K6 =2N(T 2
1 + 1)(I0 + 1 + K0 + K1 + K2 + K3)7, (3.48)
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K7 =2N(T 2
1 + 1)(I0 + 1 + K0 + K1 + K2 + K3)7,

+ 2N(I0 + 1 + K0 + K1 + K2 + K3 + K5 + K6)6 (3.49)

and if T∗ satisfies

T∗ ≤ 1√
L1

, (3.50)

where

L1 = min
{
2N(I0 + 1 + K0 + K2)5, 2N(I0 + 1 + K0 + K1 + K2 + K3)7

}
. (3.51)

Step 4: estimates for ψp+1. We multiply the differential equation in (3.8) by ψ′p+1,
ψ′′p+1 and ψ′′′p+1, respectively, integrate the sum of the resulting equations over (0, 1)×(0, T∗)
and integrate by parts. In view of (3.35)-(3.36), (3.38)-(3.39), (3.41)-(3.43), we obtain after
tedious computations

‖∂2
xψp+1(t)‖2 ≤ 1

ν

(
2‖v1‖2

C1([0,1])‖w1‖2
1 + T∗L3

)
eT∗(2+N(I0+1)2) (3.52)

and

‖ψ′′′p+1(t)‖2 + ‖ψ′′2(t)‖2 + ν‖∂2
xψ′′p+1(t)‖2 + ν‖∂2

xψ′p+1(t)‖2 + ‖ψ′p+1‖2

≤N (I0 + T∗L5) eT∗L4 , (3.53)

where

L3 = N(I0 + 1 + K0 + K2)3, (3.54)

L4 =8 + 6N(I0 + 1 + K0 + K5 + K6 + K7)3 > 2 + N(I0 + 1)2, (3.55)

L5 =2N(I0 + 1 + K0 + K1 + K2 + K5 + K7)5. (3.56)

Define
K0 = 20NI0 · 1

min {1, ν} = 20NI0 ·max
{
1, ν−1

}
. (3.57)

Using (3.18) (which is a consequence of (3.11)), we see that ψp+1 satisfies

‖∂2
xψp+1(t)‖2 ≤ α2w2

∗,

‖(ψ′p+1, ψ
′′
p+1)(t)‖2

2 + ‖ψ′′′p+1(t)‖2 ≤ 20NI0 ·max
{
1, ν−1

}
= K0 (3.58)

if

T∗ ≤ min
{

1√
L1

,
B1

4L3
,

ln 2
2 + N(I0 + 1)2

,
ln 2

2 + N(I0 + 1)
,

ln 2
L4

,
I0

L5

}
, (3.59)

where
B1 = να2w2

∗ − 4‖v1‖2
C1([0,1])‖w1‖2

1.

This proves (3.27) and (3.28).
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To verify (3.29) we employ the differential equation in (3.8) again. We use (3.58),
(3.35), (3.21), and (3.59) to estimate

‖∂4
xψp+1(t)‖2 ≤N

ν2
(‖ψ′′p+1(t)‖2 + ‖ψ′p+1(t)‖2 + ‖ψp+1(t)‖2 + ‖k∂xψ′p+1(t)‖2)

+
2
ν2
‖g4(·, Up)(t)‖2

≤2N

ν2
(I0 + 1)3(1 + K0) + 64a1(2‖v1‖2

C1([0,1])‖w1‖2
1 + T∗L3)K2. (3.60)

Here, we used the fact that (3.52) is also valid for ψp in [0, T∗].
From (3.11) and (3.40) we infer

128a1‖v1‖2
C1([0,1])‖w1‖2

1 = 128‖v1‖2
C1([0,1])(1− α)−2w−2

∗ ‖w1‖2
1 < 1

which implies

1−
128‖v1‖2

C1([0,1])‖w1‖2
1

(1− α)2w2∗
> 0.

Thus, choosing

K2 =
8(1− α)2w2∗N(I0 + 1)3(1 + K0)

ν2[(1− α)2w2∗ − 128‖v1‖2
C1([0,1])

‖w1‖2
1]

, (3.61)

where K0 is defined by (3.57), we obtain from (3.60) and the Sobolev embedding theorem

‖∂3
xψp+1(t)‖2 + ‖∂4

xψp+1(t)‖2 ≤ K2

so long as we choose

T∗ = min
{

1√
L1

,
B0

L3
,

ln 2
2 + N(I0 + 1)

,
ln 2
L4

,
I0

L5

}
. (3.63)

We recall that L1, L3, L4, L5, and I0 are given by (3.51), (3.54)-(3.56), and (3.16),
respectively, N > 0 is a generic constant, and

B0 = min

{
(1− α)2w2∗ − 128‖v1‖2

C1([0,1])‖w1‖2
1

64
,

α2w2∗ε2 − 16‖v1‖2
C1([0,1])‖w1‖2

1

8

}
> 0

due to (3.11). Notice that (3.63) implies (3.50) and (3.59).
Differentiating the differential equation in (3.8) with respect to t, integrating over

(0, 1), and using (3.58), (3.41) and (3.37), we can estimate ∂4
xψ′p+1 as

‖∂4
xψ′p+1(t)‖2 ≤N

ν2
(‖ψ′′′p+1(t)‖2 + ‖ψ′′p+1(t)‖2 + ‖ψ′p+1(t)‖2 + ‖(k∂xψ′p+1)

′(t)‖2)

+
2
ν2
‖g′4(·, Up)(t)‖2 ≤ 2N

ν2
(I0 + 1 + K0 + K2 + K5)

4 .

Thus, choosing

K1 =
4N

ν2
(I0 + 1 + K0 + K2 + K5)4, (3.64)



30 Quantum Euler-Poisson Systems

and using Sobolev embedding theorem, we have

‖∂3
xψ′p+1(t)‖2 + ‖∂4

xψ′p+1(t)‖2 ≤ K1 (3.65)

Differentiating the differential equation in (3.8) once and twice with respect to x, inte-
grating over (0, 1), and employing (3.58), (3.41), and (3.37), we can estimate ∂5

xψp+1 and
∂6

xψp+1 as

‖∂5
xψp+1(t)‖2 + ‖∂6

xψp+1(t)‖2

≤N

ν2

(‖∂xψ′′p+1(t)‖2
1 + ‖∂xψ′p+1(t)‖2

1 + ‖∂xψp+1(t)‖2
1

)

+
N

ν2
‖∂x(k∂xψ′p+1)(t)‖2

1 +
2
ν2
‖∂xg4(·, U2p)(t)‖2

1 ≤
1
2
K3,

where we choose
K3 =

6N

ν2
(I0 + 1 + K0 + K1 + K2)5. (3.66)

Now we choose the constants Ki as follows. Let K0 be given by (3.57), K2 by (3.61), K5

by (3.47), K1 by (3.64), K3 by (3.66), K6 by (3.48), and K7 by (3.49) (with ν = ε2/4). The
constant T∗ is determined by (3.63). This shows that (ψp+1, ηp+1) satisfies (3.27)–(3.30)
for t ∈ [0, T∗].

Step 5: end of the proof. The uniform bounds for ep+1 ∈ C1([0, T∗];H4) of (3.9)
follow from similar computations as those needed to derive (3.44), where the index p is
replaced by p + 1.

By induction, we conclude that {U i}∞p=1 exists uniformly in [0, T∗] with T∗ given by
(3.63) and satisfies (3.13)–(3.14) uniformly for

M0 = max {K0, K1, K2, K3, K5, K6, K7} .

The proof of Lemma 3.2 is complete.

Remark 3.3 It follows from the last two inequalities of (3.14) that

ψi(x, t) + w1(x) ≥ (1− α)w∗ > 0, i ≥ 1. (3.67)

For the proof of Theorem 1.1, we observe that after a tedious computation similarly
as in the proof of Lemma 3.2, we can obtain the the following estimates

‖ηp+1 − ηp‖2
C1(0,T∗∗;H1) + ‖ψp+1 − ψp‖2

Ci(0,T∗∗;H4−2i) + ‖ep+1 − ep‖2
C1(0,T∗∗;H2)

≤T∗∗α(N, M0)
(
‖ηp − ηp−1‖2

C1(0,T∗∗;H1) + ‖ψp − ψp−1‖2
Ci(0,T∗∗;H4−2i)

)
, i = 0, 1, 2, (3.68)
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for any T∗∗ ≤ T∗. Here α(N, M0) is a function of N, M0. Taking T∗∗ such that

T∗∗ < min
{

b1

α(N,M0)
, T∗

}
, b1 ∈ (0, 1), (3.69)

then it follows from (3.68):
∞∑

p=1

(
‖ηp+1 − ηp‖2

C1(0,T∗∗;H1) + ‖ep+1 − ep‖2
C1(0,T∗∗;H2)

)

+
∞∑

p=1

‖ψp+1 − ψp‖2
Ci(0,T∗∗;H4−2i) ≤ C, i = 0, 1, 2, (3.70)

with C > 0 a constant.

Proof of Theorem 1.1. By Lemma 3.2 and (3.70), the sequence {Up}∞p=1 satisfies (3.13)–
(3.14), (3.67), and (3.70) uniformly in [0, T ] with T ≤ T∗∗. Applying the Ascoli-Arzela
theorem and the Aubin-Lions lemma to {Up}∞p=1, it follows that there exists U = (ψ, η, e)
satisfying

η ∈ C1([0, T ]; H3), e ∈ C1([0, T ];H4),

ψ ∈ Ci([0, T ]; H6−2i ∩H2
0 ) ∩ C3([0, T ];L2), i = 0, 1, 2,

and there is a subsequence {Upj , Upj+1}∞j=1with pj + 1 ≤ pj+1 such that

ψpj+1, ψpj

j→∞−−−−→ ψ strongly in Ci([0, T ]; H6−2i−σ), i = 0, 1, 2,

ηpj+1, ηpj

j→∞−−−−→ η strongly in C1([0, T ]; H3−σ),

epj+1, epj

j→∞−−−−→ e strongly in C1([0, T ];H4−σ),

for any σ > 0.
It is not difficult to verify that U is a solution of (3.7)–(3.9) and satisfies (3.67) where

Up is replaced by U . Setting

w = w1 + ψ > 0, j = j1 + η, φ = φ1 + e,

we see that j ∈ C([0, T ];H5) and (w, j, φ) is a local-in-time solution of the IBVP (1.14)–
(1.19). The uniqueness can be proven similarly as the estimates (3.70). The proof of
Theorem 1.1 is complete.
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[11] A. Jüngel, A steady-state potential flow Euler-Poisson system for charged quantum fluids,
Comm. Math. Phys. 194 (1998), 463–479.
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