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Abstract

In the context of linear gyrokinetic simulations, an analysis of the applica-
tion of field-aligned coordinate systems generated numerically from magne-

tohydrodynamic equilibria is presented. This family of systems allows some
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flexibility in the choice of the coordinates, and gyrokinetic solvers often dif-
fer in this respect. Certain transformations are therefore required in order to
compare physics results. Accordingly, benchmarks of a linear microinstabil-
ity are carried out between two similar gyrokinetic codes. Effort is also put
on the verification of the special properties of the generated systems through

certain diagnostics.

I Introduction

Since the perpendicular transport in magnetized plasmas is very slow compared to
the parallel one, microinstabilities and microturbulence are very extended along
the magnetic field. Hence, both linear and nonlinear gyrokinetic simulations ben-
efit greatly from the use of field-aligned (also known as magnetic) coordinate
systems (for a thorough exposition of this subject, see Ref. [1]). This setup re-
quires expanding several differential operators on these adapted coordinates and
computing a set of geometric components.

In the past, linear and nonlinear gyrokinetic benchmarks were performed
(see, e.g., Refs. [2, 3, 4, 5]) considering a circular cross section axisymmetric con-
figuration or Miller-type equilibria (details are found in Ref. [6]), which have been
proposed to capture effects of plasma shaping and finite aspect ratio. In these
cases, all geometric terms can be evaluated analytically, and code-code compar-
isons are straightforward as far as magnetic geometry is concerned. However, for
many situations of practical interest — like non-axisymmetry or proximity to the
plasma edge — the necessity to employ magnetohydrodynamic (MHD) equilibria
arises. Here, there exists some flexibility in choosing appropriate coordinates, as
well as different ways to determine the geometric information required for gyroki-

netic simulations. This fact turns code benchmarks into a subtle enterprise.
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Although the constant increase in computing power significantly alleviates
the burden of turbulence simulations, linear gyrokinetics remain a quite active
field of study (see, e.g., Refs. [7, 8, 9, 10]). The present work involves two fre-
quently used gyrokinetic codes — in their linear mode of operation — GENE and
GS2 (see, e.g., Refs. [11] and [12], respectively), which solve the same set of
equations but differ in the description and numerical implementation of the mag-
netic geometry. Our goal is to pinpoint and subsequently resolve incompatibili-
ties which emerge naturally in the context of linear gyrokinetic calculations, once

MHD equilibria are employed.

The remainder of this paper is organized as follows. In Section II, on the basis
of an axisymmetric MHD equilibrium, we describe two coordinate systems differ-
ing with respect to the definition of the surface label. The numerical generation
of these systems is accomplished through field line tracing (FLT) implemented in
the code TRACER (the principles and implemetation of this technique are de-
scribed in Refs. [13, 14]), The characteristics of these systems are verified through
several diagnostics. Subsequently, each coordinate system is applied to the gy-
rokinetic code GENE, in order to determine the linear properties (growth rates
and frequencies) of an Ion Temperature Gradient (ITG) instability. The inter-
pretation of the results has twofold scope, acting as a consistency check for the
TRACER/GENE platform itself, as well as indicating the method of benchmark-
ing simulation results from codes which follow different approaches to address the

geometry.

Indeed, such a case is presented in Section III, where we perform an anal-
ogous study, this time involving both gyrokinetic codes GENE and GS2. The
relations connecting the geometric elements between the two approaches are an-

alytically derived and numerically evaluated. In view of the incompatibility be-
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tween the geometric descriptions, care has to be exercised when the issue of
benchmarking the corresponding simulation results arises. In this context, it will
become clear that the proper assignment of the key parameters controlling the
instability is of major importance. In Section 4, we recapitulate the main findings

of this work.

IT Comparison of geometric quantities and gyroki-
netic results between two magnetic coordinate sys-

tems

In this section, we numerically generate two straight-field-line coordinate systems,
based on data from the DIII-D tokamak device (shot number 126848), kindly pro-
vided by T. Rhodes. This comprises an EFIT (g-style) file, which provides the
equilibrium information, coupled with a database (iterdb.126848_woNBI), which
contains the radial profiles of several experimentally determined quantities. The
coordinate systems, described in detail below, are constructed using the code
TRACER and subsequently applied to the gyrokinetic code GENE, in order to
simulate a typical linear ITG instability. Consistency requires that we obtain iden-
tical results (in terms of growth rates and frequencies) for both cases, provided
that the two systems are correctly mapped against each other. Therefore, this
exercise introduces the benchmarks between the codes GENE and GS2, which

utilize different coordinate systems.

II.A  Description and numerical generation of coordinate systems

In the following, the properties of the magnetic coordinate systems are described,

in the framework of flux tube gyrokinetics. We also provide details concerning the



Verification and application of magnetic coordinate systems 5

numerical generation of the systems via the FLT method (for more information,

the reader is referred to [14]).

II.A.1 Flux Coordinate System (FCS)

This is a standard flux coordinate system, namely the surface label is defined
through a flux quantity. Specifically, we consider the coordinates (p,v, x), where
p = \/% (in units of meters). Here, ¥; denotes the toroidal flux and B, =
1.8955T is the value of the vacuum toroidal magnetic field at the geometric axis.
By construction, the coordinate x follows the field line and is related to the
toroidal angle ¢ through the relation dy = d¢/q, so x € [—m,7].

Our goal is to construct the Clebsch representation for the magnetic field

line which generates the flux tube,

B =B,Vpx Vv (2.1)

U0
27 B,

where v = (g0 — ¢). As usual, 0 stands for the poloidal angle and ¢(p) is the
safety factor. Also, ¥ is the poloidal flux evaluated at the surface p = pg, where
the field line belongs and in the neighborhood of which the flux tube is located
(thereafter, the same convention applies to all quantities with the subscript “07).
Note that in the representation (2.1) both Clebsch coordinates p and v carry
dimensions of length.

The FLT procedure performs the transformation from the cylindrical system
(r, ¢, z) to the FCS (p, v, x). This involves the numerical solution of a linear system

of ordinary differential equations, in the form of an initial value problem. In

practice, starting from an initial point with cylindrical coordinates (7, ¢in, 2in)
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(in the axisymmetric case currently under study, the value of ¢;;, is arbitrary),
the field line is equally followed in both forward (x > 0) and backward (x < 0)
directions until one poloidal transit is completed. The coordinates r;, and z;, are
determined by the requirement that the initial point lies on the surface p = pg
and also in the midplane of the device, where B, = 0 holds. Hence, we prescribe
~and Vv
in

the generation of a coordinate system suitable for describing a configuration of

the quantities Vp at the initial point, in a form which guarantees

m

nested magnetic surfaces (note that, in general, the Clebsch representation does

not presuppose the existence of a surface label).

Setting % - = 0 and noting that B,|i;, = 0 together with the property

m

B - Vp =0, we obtain

0
Vvo| =22 vr=rwvr, (2.2)
in or lin
where we introduced the dimensionless quantity £ = % ~, which will appear
m

several times in the following. To complete the determination of the initial con-

= 0, thus

oy ov
ditions, we set g~ .

_ov
in_ 0z

Vz+ Ov

VV in 8_¢

V. (2.3)

in

Now, in order to obtain the representation (2.1), we postulate

ov —B¢ _B¢ in

-~ = =2 2.4

0z lin L:Ba n EBa ( )
and

ov rB, TinBz,in

P = = 2 . 2.5

(9¢ in ﬁBa in ﬁBa ( )
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We remark that conditions (2.4) and (2.5) imply that B - Vv = 0.

IT1.A.2 Generic Coordinate System (GCS)

This coordinate system has the special property that the surface label is not de-
fined on the basis of a flux quantity. In principle, through the FLT procedure,
it is possible to construct a surface label without presupposing knowledge of the
fluxes. This approach can be advantageous when the flux information is numeri-
cally unreliable (e.g. regions close to the separatrix or islands, especially for stel-
larator configurations) or when the magnetic surfaces themselves cease to exist
(e.g. stochastic regions). In fact, in the latter case, the GCS has no counterpart.

We postulate the system (g, 7, x) (thereafter, quantities corresponding to the
GCS will be denoted by tilde). Compared to the FCS, the new Clebsch coordinates
p and 7 retain dimensions of length, while the field following coordinate y remains
the same.

In a manner similar to the FCS case, the representation of the field line

B =B, Vjx Vi (2.6)

is generated by applying the initial conditions

Vp| =Vr (2.7)

n

and

—B.. B, .
= Thin g,y Tnmin gy (2.8)

Vv et i
Y n B, B,

the main difference being that in the expressions (2.7) and (2.8), only the magnetic
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field is involved, i.e., we tacitly assume

oY
1l
Dt

=1 (2.9)

vls
s

This condition establishes a link between the GCS and the FCS. Indeed, consid-

ering the functional dependence p = p(p), we get at the initial point

op dp| Op
£ =2 Z£ 2.1
orlin  dploOrlin (2.10)
or
~ do
= 2.11
£ dp‘oL ( )

from which, with the aid of (2.9), we derive the relation between the surface labels
| .
—| =L, 2.12
aplo (2.12)
Furthermore, on the surface p = py we have

-
B = B,Vj x Vﬁ:Bad—Z‘OVpx Vi = B,Vp x Vv, (2.13)

so it holds

Tz
Il
)
R

(2.14)

II.B Verification of the coordinate systems

Here, we present several diagnostics in order to evaluate the quality of the nu-

merically generated systems.
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We start with the verification of the field-alignment, since this property is
crucial for the accuracy of the gyrokinetic calculations. We focus only on the

FCS, since things are similar for the GCS. From the representation

B =B,Vpx Vv (2.15)

one readily gets

(B/Ba)* = g"°g" — (9")° . (2.16)

We proceed with the calculation of the stream function JB - Vy, where J is
the Jacobian of the transformation from the cylindrical to the magnetic system.

Indeed, from the representation (2.15), we obtain

B-Vx=DB,Vpx Vv -Vyx=B,J ! (2.17)

therefore, along the field line, it should numerically hold

JBX =B,. (2.18)

The verification of expressions (2.16) and (2.18) is presented in Fig. 1.

Following, we derive the analytical relations connecting several geometric
quantities appearing in the gyrokinetic setup between the two systems. For the

metric elements, in view of (2.12) and (2.14), it holds (for simplicity, we denote
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1.8956 2.2
1=
2 [¢b]

o 1.8955 E 14
- k=)
T

1.8954 0.5

- 0 T - 0 T
X X

Figure 1: (Left) Numerical calculation of the stream function (line) to be com-
pared with the value of B, (crosses). (Right) Verification of the field-alignment
property. The squared normalized magnetic field (B/B,)? is shown with the line,
while the metric combination g??¢g"” — (g””)? is depicted by the crosses.

g2 =Vp-Vu, §'2=Vj- Vi etc.)

dsr \2

gll — VﬁVﬁ: (_p ) Vp.Vp:E_lel, (219)
dplo

§12 = Vjp-Vi= L‘,*IVp - LV = 912 , (2.20)

§? = Vb.-Vi=L2g2. (2:21)

Next, we relate the curvature components between the two systems,

0 =bxVB-Vp=L"'bxVB-Vp=L"'w (2.22)

and

Gy =bxVB-Vi=LbxVB-Vv=_Luws. (2.23)

For the numerical realization, we select the surface identified by p = 0.60348m

and compute the quantity £ = 1.661, by exploiting the information contained in
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the database (specifically, the p—profile of the major and minor radii at the el-
evation of the magnetic axis). Based on the description in Section II.A, we are
now able to generate both coordinate systems and extract the required geometric

components.

Shown in Fig. 2 are the three metric elements and the Jacobian for both
systems. The solid lines correspond to quantities for the FCS, whereas the dashed
ones (wherever appearing) represent the GCS. To facilitate comparison, the crosses
signify again quantities related to the GCS, although this time appropriately
rescaled. For instance, in the left upper panel, they depict the rescaled metric
L£? g'!) according to (2.19). Similarly, in the left lower panel, the crosses show

the rescaled metric £72 §22

, according to (2.21). In the panels where the dashed
lines are absent, it is implied that these quantities should be identical for both
systems without rescaling. Note that the Jacobian is expected to be equal for
the two systems, in view of the same stream functions. In Fig. 3 we present the
numerical output for the curvature components. Again, the results related to the
FCS are depicted by solid lines, whereas those for the GCS by dashed lines. The

crosses indicate the rescaled quantities for the GCS following (2.22) and (2.23).

For the purpose of gyrokinetic simulations in the framework of a flux tube
approach, the value of the global shear § is often required. For the FCS, applying

the usual parallel boundary condition to a typical scalar field A (following Ref.

[15])
Ap, v(0 +2m,¢), 0+ 2m) = A(p, v(6,¢), 0) (2.24)

and performing a standard Fourier analysis, we obtain the (dimensionless) ex-
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Figure 2: Metric elements and Jacobian for the two coordinate systems. The solid
lines correspond to the FCS, the dashed lines and the crosses to the GCS (see
text for explanation).

Figure 3: Curvature components for the two coordinate systems. The solid lines
correspond to the FCS, the dashed lines and the crosses to the GCS (see text for
explanation).
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pression

L dv,) do
2nB, dp lodp

(2.25)

8§ =

07

or, using the definition of the flux label p, we end up with the familiar form

§= @% . (2.26)
q0 dp

Now, the shear for the GCS is related to § through

=L ) dy gy
2w B, dp lodplo

VPR

(2.27)

Another important quantity, especially in the context of stellarator config-
urations but also for tokamak studies in the edge region, is the local shear Sj,.,
whose surface average by definition equals the global shear 5. In Appendix A, it

is shown that for the FCS it holds

B x Vp
gllBa

Sipe = —Jh-V xh with h= (2.28)

Note that the same transformation rule as in (2.27) applies to the local shear for

the GCS, ie.

Sioe = L2 Sjoe - (2.29)

At this point, we provide an additional verification test. We generate a set of flux

tubes, each on a different flux surface and for these we calculate Sj,.. Then, we
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compute the flux averages using the rule

ffw J Stoc dX

< Sjoe >=
loc firﬂJdX

(2.30)

These values of < Sj,. > should be equal, within numerical errors, to the values
of the global shear which can be readily extracted from the database. In Fig. 4,
we display the result of this non-trivial test. It is clearly seen that the values

determined by the two methods are in very good agreement.

1.8
1.4 |
@
2 10|
(2]
06
0.2

0.2 0.4 0.6 0.8
Pn

Figure 4: Global shear as a function of the normalized radius for the DIII-D
configuration, calculated by the database (line) and TRACER (crosses).

II.C Comparison and interpretation of ITG simulation results

We are now ready to present and discuss simulation results for a linear ITG
instability, after implementing each coordinate system into the gyrokinetic code
GENE. Our goal is to demonstrate that the physics output is insensitive to the
coordinate system employed. As will be clear in the following, this procedure calls
for a proper handling of the parameters controlling the instability.

The driving mechanism of the ITG instability is attributed to the advection
term appearing in the Vlasov gyrokinetic equation, which involves the radial ion

temperature gradient (in principle, the density gradient may also contribute) (see
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also Ref. [14])

b xV® VT;
B 1;

Fi, (2.31)

where ® denotes the gyro-averaged potential, Fj is the equilibrium (Maxwellian)
distribution for the ions and 7; is the background ion temperature. Once expanded
on the FCS and Fourier transformed (for the purposes of numerical treatment),
expression (2.31) becomes

iky Lt e

—F; 2.32
T; B, 10 ( )

-1 _ 1 dI;
where L;" = 75

. In the context of the GCS, the analogous term reads
~~ 1 ®
iky L7 —Fo (2.33)
% Ba

ah 7ol — 14D
w1thLi =T dp-

In order to connect the two pictures, the key link is the invariance of the
Vlasov equation under coordinate transformations. Therefore, between the two

coordinate systems, the following constraint must hold
ky Lz! =ky L7 (2.34)

Now, since the temperature gradients for the two coordinate systems are related

through

Lyl =cLy, (2.35)
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the mapping between the k, spectra will read
ky=L""ky. (2.36)

Expressions (2.35) and (2.36) are fundamental for the interpretation of the gyroki-
netic results. In order to proceed with a direct comparison of the physics output,
one has to make certain that these constraints are simultaneously satisfied for

the two coordinate systems through the input parameters.

In the light of these findings, we perform linear ITG calculations correspond-
ing to the two coordinate systems. [The electron dynamics is assumed to be adi-
abatic, the density profile flat and the electron to ion temperature ratio equal to
unity.] In particular, we carry out a scan of growth rates and frequencies over
the binormal wavenumber spectrum k&, (normalized with respect to ps = ¢5/€Y;,
where ¢, is the ion sound speed and €; is the ion Larmor frequency). Setting the
(normalized) temperature gradient equal to ozLi,1 = 2.356 for the FCS (here,
a = 0.592m is half the diameter of the last closed flux surface (LCFS)), the
constraint (2.35) adjusts the gradient for the GCS to aiil = 2.356 £ = 3.913.
In addition, given a set of binormal wavenumbers for the FCS, we select proper

values for the GCS, so that the rule (2.36) is fulfilled.

In Fig. 5, the growth rates and frequencies based on the FCS and the GCS are

presented. The values are identical proving the consistency of the calculations.
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Figure 5: Growth rates in units of %= (left) and frequencies in units of = (right)
from the linear ITG calculations based on the FCS (line) and the GCS (crosses).

III Benchmark of gyrokinetic codes for a numerical

tokamak equilibrium

In this section, we carry out a similar analysis as before, this time involving the
gyrokinetic codes GS2 and GENE. As will be discussed presently, the employed
coordinate systems and, as a consequence of this, the geometric components are
not identical.

For this application, the coordinate system for GENE is the FCS, analyzed in
detail in Section II.A.1. Therefore, we only present here the coordinate setup for
GS2. Let us postulate the following dimensionless quantities, thereafter denoted
by the subscript “N”:

v, B

— :7’ B :—’ V == V 31
00 2ra2B, N B, N=a (3.1)

where ¥, denotes the poloidal flux, pg = 0.754m is the averaged minor radius at
the LCFS and a = 0.592m as before. Now, the coordinate system for GS2 reads

(pnsvN,0), where vy = Uy (g0 — ¢). Here, the prime denotes differentiation
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with respect to pny. We notice that the field following coordinate is the poloidal

angle 0 (in contrast to the FCS, where the coordinate y is closely related to the

toroidal angle). Finally, the field representation for GS2 becomes

BN = Vypn

X Vn (Eno(d —qb)) - (3.2)

IIT.A Relations for geometric elements and simulation parame-

ters

We derive the equations relating

the geometric elements as well as the temper-

ature gradients and ky spectra for the two codes. For the metric coefficients, we

successively obtain

9., = Vnpn-Vnpn
P p
= (aV)| — ) - (aV)(—
( )(Po> ( )(PO)
2
@ 11
= |— , 3.3
(2) o, 33
9.2, = Vpn-Vn (¥no(qd — ¢))
N A P Ty,
- V) (£)-@v) (GQ%Baw q9>>
and similarly
22 _ (PO 2 2
as2 ( a ) GENE (35)
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We continue with the curvature terms. In the GS2 formulation, the relevant

quantities are

GS2 2

Wi = B Nodob X VN By - Vnpy
N
-ty q'a—szVB \Y (3.6)
B]QV NO OBapo P .
and
GS2 _ 2 b B
Wo = @ X VN N - VNI/N
2 po
= ——b B- . 3.7
B]QV Ba x V VI/N ( )

In order to connect with the GENE formulation, we expand the triple prod-

ucts on the FCS (see Appendix B for details). For instance,

oB gl g8 —gi2 g3 5B
ov IemnToms — 9oz ) OX

therefore (3.6) becomes

UJG52 _ 2 a \I/I q/ o (aB + gcl;llaNEg?;?::NE — géiNEg(l}iNE 8B>
1 - e EN0H0O[ | 5, 11 22 _ (12 2 v
po B v gGENEgGENE (gGENE) 8X
(6 ENE
= Tvodo Wi (3.9)

In the same fashion, we obtain

wGSZ _ _2@ ﬁ a_B _ gC1;12€.NEg(2;iNE — g?}iNEg(l}?;:NE a_B
’ @B\ oI~ Uons)” X
_ P e (3.10)

(67
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Furthermore, we derive the relations for the key parameters in the context
of the flux tube gyrokinetic simulations, namely the normalized ion temperature

gradient (nitg) and the probed wavenumber k,. For the former, it holds

adT_aldT o

(TLZtg)GENE = fd_p = E?dp—]v = %(mtg)GSQ . (311)

Now, the invariance of the Vlasov equation with respect to coordinate transfor-
mations imposes the rule (see also (2.34))

(nitg) koo = (nitg) _ ky, (3.12)

GENE Y Gsz Y

which in turn implies that, for the comparison of the physics output, e.g. in the
context of a ky scan, one has to take into account the rule

GENE P0 , as2
By =k (3.13)

II1.B Comparison of geometric quantities and gyrokinetic results

In order to set the stage for the benchmarks, we employ the DIII-D configuration
described before, and generate the same flux tube for both codes, characterized
by pny = 0.8 and vy = 0. First, we perform direct numerical comparisons of the
geometric quantities on the basis of the relations derived above. [A word of caution
is in place here: since the two codes use a different definition for the parallel
coordinate, we map the GENE output onto the poloidal angle 6 to facilitate
comparison. However, for the gyrokinetic simulations, the coordinate x is always
used.] All geometry related data presented here comes from the TRACER code
for the GENE setup, while for GS2 a separate geometry module is recruited based

on ideal MHD calculations (the principle behind the method can be found in Ref.
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[16]). As an additional piece of information, in Fig. 6, it is demonstrated that the
normalized magnetic field itself as well as the normalized component b - V8 =
ab? coincide. This result guarantees that we indeed consider the same flux tube

for both codes. We proceed with the comparison of the metric elements. The rules

0.2
P o_Q
fas) = 0.1
0.0
-TT 0 b1
(5} 0

Figure 6: (Left) Comparison of the normalized magnetic field for GS2 (line) and
GENE (crosses). (Right) Same for the normalized component.

relating these quantities for the two codes are given by expressions (3.3)-(3.5).
The numerical output appears in Fig. 7, showing very good agreement, once the
quantities for GENE have been rescaled, where appropriate. Moreover, the metric

11,22

combination g g (g'?)?, appearing in the same figure, is practically equal for

12)
both codes and, at the same time, equal to the squared normalized magnetic field
(see Section II.B). The last part of the geometry comparison comprises the two
curvature components, which demonstrate excellent agreement (see Fig. 8), again
after rescaling the quantities referring to GENE, according to (3.3) and (3.5).
In the remainder of this section, we will present and discuss results from
a linear ITG instability, produced by GENE and GS2. In order to evaluate the

quality of the benchmarks, we use the simple $-a model as norm, for which

no special transformations are required. The relevant comparison appears in
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1.8 50.0
— [V}
= 1.0 > 5.0
0.2 -40.0
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0 0
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Figure 7: Comparison of the metric elements for GS2 (line) and GENE (crosses)
after rescaling.

2.0
<) 8 0.2
-1.5
-TC 0 b1
(S} 0

Figure 8: Comparison of the curvature components for GS2 (line) and GENE
(crosses) after rescaling.
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Figure 9: k, scan for §-a geometry from GS2 (line) and GENE (crosses). (Left)
Comparison of the growth rates in units of ¢;/R. (Right) Comparison of the
frequencies in units of ¢;/R, where R is the major radius.

Fig. 9. For the DIII-D case, the linear properties of the instability as a func-
tion of the probed wavenumber k, are displayed in Fig. 10. Specifically, we have

selected (nitg).., = 3, therefore for GENE we prescribe (nitg).. = 2.35 ac-

GS2 GS2

cording to the rule (3.11). For these calculations, it is assumed that the nor-
malized ion density gradient (nidg) also contributes to the instability, i.e., we

set (nidg)_... = 1 and, accordingly, (nidg) = 0.78. At the same time, we

GS2 GENE

should take into account the rule connecting the binormal wavenumbers, sug-
gested by (3.13). For the purposes of the k,p, scan, we have chosen for GS2 the
series k;SZpS = [0.25,0.30,0.35,...,1.0], thus for GENE, one should postulate

GENE
k

vy Ps= [0.32,0.45,0.57,...,1.27], respectively. Only then are the growth rates

and frequencies readily comparable. The results demonstrate that the gyroki-
netic computations from the two codes using an MHD equilibrium agree with

each other to the same degree as with the -« configuration.
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Figure 10: k, scan for DIII-D equilibrium from GS2 (line) and GENE (crosses).
(Left) Comparison of the growth rates in units of ¢s/a. (Right) Comparison of
the frequencies in units of ¢s/a.

IV Conclusions

The aim of this work is to draw attention to the diversity of field-aligned coordi-
nate systems generated numerically from magnetohydrodynamic equilibria, in the
context of linear gyrokinetic simulations. As was clearly demonstrated through a
pragmatic approach, certain steps should be taken before systematic benchmarks
between gyrokinetic codes with different geometry implementation are carried

out.

More specifically, it is important to ascertain that the geometric elements,
which are usually prepared through different modules for the various gyrokinetic
solvers, are in good agreement. That this is the case for the codes GENE and
GS2 was shown here by performing extensive numerical comparisons. At the
same time, certain diagnostics were exploited in order to verify the quality of
the magnetic coordinate systems. As a second step, a necessary transformation
procedure, involving the temperature/density gradients and the binormal spectra

ky, was described in order to compare the physics results. Having done this, we
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performed ITG gyrokinetic simulations with these codes, and obtained quantita-
tive agreement when working with an EFIT equilibrium for the tokamak DIII-D,
of the same level as with the model § — a configuration.

The present analysis was restricted to the axisymmetric case and, of course, it
is of major concern to generalize it for three dimensional equilibria, in the context
of simulations in stellarator geometry. However, this effort is more complicated,
since it calls for several additional modules, such as the extended equilibrium code
VMEC (see, e.g., Ref. [17]), as well as the codes TERPSICHORE and VVBAL
(see Refs. [18, 19]), which prepare the geometric elements for GS2 (for GENE,
the TRACER code is again utilized), and therefore it is deferred to a separate

upcoming publication.



26 P. Xanthopoulos et al.

Appendix A: Local shear for the FCS

We provide the expression for the local shear Sj,. associated with the FCS
and we formally prove its consistency on the grounds that the flux average of the

local shear should be equal to the global shear 3.

Our basis is the field representation

. . o ‘inO
B =B,Vpx Vv, with v= 5B, (g0 — ¢) - (A-1)

Now, we claim that the proper definition for the local shear is

. B xVp
Sioc =—Jh-V xh, with h= 7B, (A-2)
The Jacobian of the system is determined as follows
-1 \iij
JT =Vpx Vv -Vyx= (VpxV6-Vo). (A-3)
2w B,

Using the representation (A-1) in the definition of h, after some straightforward

algebra, we obtain

\j 0 _ o g
h — 27£ (9 gppqg vp+qve—v¢>,
W PP _ o4 PP
Vxh = 27:1’;’ (v (%) xvp+qvva9> (A-4)
a

and finally

_ \:.DpO . 1) quG
Sloc = 7'('— (q - (80 + qatb) (gp - W . (A'5)
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Taking the flux average, we end up with

<Sloc> =

do , (A-6)

thus retrieving the expression of § for the FCS (see also (2.25)).
Based on the representation (A-1), we rewrite (A-5) in a form which lends

itself to numerical evaluation via the FLT method. Successively, we have

g
h = Vv-=—+Vp,
gPP
g
Vxh = VpxV|[=—],
gpp
pv
h-Vxh = —iB-v<g—).
Ba gPP

Further we notice that, along the field line, it holds B - V = BX%, thus

_JBX d (g*
S = (7). o

As a final step, we substitute the value of the stream function (see (2.18)), thus

_ 4 (9
Sioc = a (g%) : (A'S)

The form (A-8) is most suitable for calculating the local shear with the TRACER

code.
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Appendix B: Proof of expression (3.8)

In the following, we attempt to generalize, rather than prove expression (3.8).

1

Specifically, consider a Clebsch coordinate system (v',v2 v3), then for any scalar

functions A, G, it holds

(bx VA)-VG = Jb3<(g11g22 — (g'2)?)[91 4, 5G]
+ (911923 _ 912913)[8114, 83G]

+ (92" — g%9")[024,05G)) (B-1)
where we introduced the commutator
[0;A,0;G) = 0;A0;G — 0,G0O;A, i,j=1,...,3. (B-2)

We proceed with the proof of expression (B-1) as follows (repeated indices are

summed)
bx VA = b0ide; x ' = Jb?9;A(e! x €?) x ¢
- J ((91162 o 91261)81A + (91262 . 92261)82A
+ (g"3e2— 92361)83A) . (B-3)
Then,
(b x VA)-VG = (b x VA) - /9,G (B-4)

which, on substitution of the expression (B-3), readily gives (B-1).

In order to prove expression (3.8), we postulate A = B, G = p, v} = p,
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v? = v and v3 = x, thus

0B 11 23 12 13\9B
) )

OB 911923 _ 912913 OB
_ 3(,11 22 1242
=P - (G + g o ) B

(bxtun-vp:—Jﬁ(@“g”—wfﬁﬁ

Now, we notice that, given the representation B = B,Vv' x Vv?, we get

3 — 3 — — — .
Bg_JB Bg—BaBZ—Ba—BN. (BG)

a

Jb3(911922 _ (912)2) = Jb

This concludes the proof for the expression (3.8).
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