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We present numerical simulations of orbiting black holes for around twelve cycles, using a high-
order multipatch approach. Unlike some other approaches, the computational speed scales almost
perfectly for thousands of processors. Multipatch methods are an alternative to AMR (adaptive
mesh refinement), with benefits of simplicity and better scaling for improving the resolution in
the wave zone. The results presented here pave the way for multipatch evolutions of mixed pairs
consisting of a black hole and a neutron star, where both the geometry and matter sectors share
the same numerical grid.
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I. INTRODUCTION

Mergers of binary compact objects (neutron stars or
black holes) are expected to be the main sources of grav-
itational waves for the ground-based interferometric de-
tectors LIGO, GEO, VIRGO, and TAMA. Neutron star-
neutron star and black hole-neutron star binaries are
also interesting because they are leading candidates for
explaining the production of short-duration gamma-ray
bursts and because gravitational wave signals from these
events may encode information about the neutron star
equation of state [1–3]. Such a merger can be accurately
modeled only by the numerical evolution of the full Ein-
stein field equations coupled (if a neutron star is present)
to an evolution of the neutron star matter.

Because of advances in numerical relativity in recent
years, stable evolutions can now be performed for most
binary cases. Accuracy and speed are now the pressing
numerical challenges: how to achieve the minimum error
given limited time and computational resources. A good
code should converge rapidly with increasing resolution
to the exact solution. Its speed should scale well with the
number of processors used in order to make good use of
parallelization. Also, an efficient use of resources will re-
quire a grid well adapted to the problem at hand. This in-
cludes using a grid with the most appropriate shape. For
example, it is reasonable to suppose that excision inner
boundaries and outer boundaries should be spherical. A
good grid will also use higher resolution where it is most
needed. For example, although the grid must extend out
into the wave zone to extract the gravitational wave sig-
nal, lower resolution is needed in the wave zone than is
needed in the vicinity of a black hole or neutron star. The
need for high resolution in neutron stars and black hole
accretion disks can become particularly acute in cases
of hydrodynamic or magnetohydrodynamic instabilities,
such as convective, Kelvin-Helmholtz, or magnetorota-

tional instabilities. In such cases, the length scale of the
unstable modes can be much smaller than the radius of
the star or disk, and the evolution will be qualitatively
wrong if the instability is completely unresolved.

One technique that has been successfully used to
deal with this problem is adaptive mesh refinement
(AMR) [4, 5]. These AMR codes generally use overlap-
ping Cartesian meshes of varying levels of refinement,
with the finer meshes being used only where they are
determined (by some algorithm) to be needed. In this
paper, we present a different method of achieving effi-
cient grid coverage, one that is algorithmically simpler
and that possesses some unique advantages.

This different technique for evolving binary compact
systems involves using multiple grid patches, each patch
having its own shape, curvilinear coordinates and resolu-
tion. The basic ideas behind these multipatch methods
have been worked out in earlier papers [6–8]. In these ref-
erences some particular patch configurations using cubes
and cubed-spheres were used. The cubed-sphere patches
were used to construct grids with exactly spherical inner
excision boundaries and outer boundaries. These meth-
ods are, hence, ideal for calculations that involve excision.
(Using AMR with excision introduces a number of com-
plications.) These techniques were then successfully used
to simulate perturbed Kerr black holes [9, 10].

Another multipatch approach has been used by the
Cornell-Caltech group to evolve Einstein’s equations for
binary black hole [11] and black hole-neutron star [12]
systems. In the binary black hole case derivatives in these
simulations are computed pseudospectrally, rather than
using finite differencing. While pseudospectral methods
produce accurate results very efficiently for binary black
hole evolutions, they are much less cost effective for sys-
tems involving matter. One reason for this is that the
discontinuities that naturally appear in the fluid flow
at shocks and stellar surfaces destroy the exponential
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convergence of spectral methods. In fact, the Cornell-
Caltech group found it necessary to evolve the fluid vari-
ables using finite differencing, while evolving the field
variables pseudospectrally. Another problem with pseu-
dospectral techniques is that they usually do not scale
well to large numbers of processors. In regions without
discontinuities, where spectral convergence is not lost,
one cannot, for example, split one large domain into two
domains with half the number of collocation points each
without a significant loss in accuracy. On the other hand,
accurate simulations of binary neutron star or black hole-
neutron star mergers are not practical without many pro-
cessors.

For these reasons, we are working towards fully finite-
difference (that is, for both the metric and fluid sectors)
multipatch simulations. As a first step in that direction,
in this paper we evolve a binary black hole system using
multipatches together with high order finite-differencing
operators (see also [13]). We show that our code con-
verges rapidly, scales well to thousands of processors, and
can stably simulate several orbits of the inspiral.

II. EVOLUTION EQUATIONS

At the continuum level, the techniques used in this pa-
per are exactly those ones previously used by the Caltech-
Cornell collaboration in binary black hole simulations. In
more detail, we use the first order reduction of the har-
monic system with a constraint presented in [14], the
constraint preserving boundary conditions of [15], and a
dual frame and a control tracking mechanism [16] to keep
the location of the black holes fixed in the computational
domain.

What differs here is the type of domain decomposition
and numerical techniques, which we describe below.

III. INITIAL DATA

The initial data that we use here consist of a snapshot
at a given time of the highest resolution 16-orbit simu-
lation done by the Caltech-Cornell collaboration, which
corresponds to the run 30c1 reported in Refs. [11, 17].
The starting time t = 0 in our simulations corresponds
to the instant t = 2887 M of the 16-orbit simulation (with
M being the sum of the irreducible masses of each black
holes). From that point, the black holes orbit for about
6 orbits before merger, although our runs stop before the
merger takes place.

This way of specifying the initial data has the advan-
tage that there is no junk radiation present in the compu-
tational domain at our starting time. Since the domains
and points used in this paper are different from those
used in the spectral simulation, we spectrally interpolate
the initial data to the multipatch domain.

The quantities needed in the generalized harmonic for-
mulation are the 4-metric gab, all of its derivatives ∂cgab,

and the gauge source functions Ha.
The outer boundary of our domain is a sphere of ra-

dius r = 144 M . This value is actually mapped to
r′ = 105 M by the dual-frame coordinate transforma-
tion, which scales and rotates the inertial coordinates
into the co-moving ones. The coordinate transformation
is a simple rescaling of the radial coordinate r′ = a(t)r by
a time dependent factor, and a rigid rotation about the
z axis. Since the binary system has been evolving before
our t = 0 time, the scale factor has a value a = 0.727 and
the rotation angle is θ = 57.95 radians at the beginning
of our simulations. The black hole coordinate separation
at the beginning of the 30c1 run is 14.44 M . At our time
t = 0 the initial coordinate separation is 10.5 M .

IV. MULTI-BLOCK DOMAIN

A. Structure

We use two types of basic building patches to cover
the whole computational domain. One is simply a cuboid
with a Cartesian coordinate map. The other is a set of six
patches that we collectively call a juggling ball. A juggling
ball can assume two different configurations. The first of
them is shown at the top of Fig. 1. It consists of a cube
whose interior has been excised by a sphere. We will refer
to it as an inner juggling ball because it is the one that we
use to excise the interior of each black hole and to cover
its immediate surroundings. The second configuration is
shown at the bottom of Fig. 1 and consists of a sphere
whose interior has been excised by a cube. We will call
it an outer juggling ball because it is the one that covers
the region away from the black holes, reaching to the
outer boundary. Both types of juggling balls use a radial
coordinate that adjusts smoothly to their geometry. Each
surface of constant radial coordinate is endowed with six
two-dimensional coordinate maps, in the same fashion
as the cubed sphere [18]. In essence, the juggling ball
is a collection of six patches, each of them topologically
equivalent to a cube.1

The basic layout of the full domain used in this paper is
shown in Fig. 2. The centers of the excised spheres (which
will be inside each black hole) are located along the x
axis at x = ±a. Here we have used two inner juggling
balls, one around each black hole. Their individual outer
boundaries are cubes with sides of length 2a. When they
are put together, we end up with a cuboid of dimensions
4a × 2a × 2a, with the longest side along the x axis.
We surround this structure with six cuboid patches of
dimensions 4a× 2a× a, aligning them along the y and z
axes. After doing so, we end up with a cubical domain

1 The name juggling ball was chosen because some real juggling

balls have a set of six quadrilateral-shaped designs on their sur-

face.
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Figure 1: Equatorial cross-section of an inner juggling ball
(top). Black lines denote the block boundaries. Colored lines
represent the coordinate grid of each block. Equatorial cross-
section of an outer juggling ball (bottom).

with sides of length 4a. To complete the patch system we
add an outer juggling ball whose cubical interior holds the
two inner juggling balls plus the six cuboids. The outer
juggling ball enables us to shape the outer boundary into
a sphere, in which case moving the boundary further out
requires an increase in the number of grid points that
scales as O(N) (as opposed to O(N3)).

The total number of patches in this basic configura-
tion is 6 cuboidal patches + 6 × (3 juggling balls) = 24
patches.

None of the patches used in this paper overlap with any
other (in which case they are usually called blocks). A
given block communicates with adjacent ones only by the
two-dimensional common surface between them. Accord-
ingly, we handle parallelization by assigning one block
per processor, in this way minimizing communication be-
tween processors.

In this basic 24-block domain case, we would use ex-
actly 24 processors, which is a fairly small number for
a binary black hole simulation. In order to achieve
higher resolutions by increasing the amount of points
per block, we subdivide the existing blocks into smaller
pieces. Since the topology of each block is cubical, it is
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Figure 2: Equatorial cut of the computational domain (top).
Schematic figure showing the direction considered as radial
(red arrows) for the cuboidal blocks (bottom).

straightforward to subdivide them. The guiding principle
that we use to accomplish the subdivision is to keep the
same number of points per block for every single block.
Although this condition is not necessary, it is convenient
because it balances the computational load across all the
processors.

For the runs presented here, we used 192- and 384-
block domains. The first case is obtained by subdividing
the inner juggling balls uniformly in the radial direction
7 times. The 6 cuboids are split by a factor of 2 and the
outer juggling ball is divided 4 times in the radial and
twice in each transverse direction. The 384-block case is
derived from the 192-block one by further split of each
block in the radial direction by a factor of 2.

Figure 3 shows the multipatch structures used in this
paper.

B. Numerical techniques

In our simulations we use the D8−4 summation-by-
parts (SBP) finite difference operator and its associated
dissipation constructed in [7]. The naming convention is
meant to indicate that the derivative is 8th order accurate
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Figure 3: Computational domain used in the simulations of
this paper

in the bulk of each block but only 4th order accurate near
inter-block boundaries. The derivative in the interior of
each block is a centered one and is modified near bound-
aries so as to satisfy the SBP property with respect to
a diagonal norm; this is the cause of the drop in conver-
gence. Information across sub-domains is communicated
using characteristic variables and a penalty method (see
[6–8] for more details).

The combination of these techniques guarantees nu-
merical stability, but at the expense of the drop in conver-
gence order near boundaries. For example, in the D8−4

case there are eight points near each boundary where the
scheme is fourth order. For technical reasons explained
below, in the simulations of this paper we use a rather
large number of blocks and processors (192 and 384),
with a very small load on each. As a consequence, the

scheme is fourth order nearly everywhere and we expect
our simulations to be 4th order convergent. This is in-
deed what our simulations below show.

C. Resolution

One of the features that a multipatch method offers is
the flexibility to increase only the radial resolution while
keeping the angular resolution constant. Given that the
angular profile of the waveforms is dominated by a few
low-ℓ modes, once a sufficient angular resolution is used
the truncation error will be dominated by the radial res-
olution.

The approximate spherical symmetry in the vicinity of
each black hole and at large distances from them allows
the radial direction to be naturally defined for each jug-
gling ball block. However, for the cuboidal blocks there
is some arbitrariness in how to choose the radial direc-
tion. In practice, a radial direction for these blocks is
useful only to define the direction along which resolution
will be increased. In Fig. 2 the radial directions for the
cuboidal blocks are indicated with arrows.

We use an angular resolution of π/58 around each black
hole and twice as much in the outer blocks. That is,
there are 116 points along an equatorial line around each
black hole and twice that number in the distant wave
region. This is somehow inefficient since the solution is
over-resolved in the angular directions compared to the
radial one (especially in the wave region). The moti-
vation behind this choice was to allow the grid points at
the boundary faces of adjacent blocks to be in one-to-one
correspondence with each other. In this way the commu-
nication of the characteristic modes at the inter-patch
boundaries does not require interpolation.

In Table I we show the total number of points in the
whole domain and per block for the simulations of this
paper. We increase resolution only along the radial di-
rection, by the same number of points in all the domains.
In our setup all blocks have the same number of points.
Since parallelization is handled by assigning one block
per processor, this guarantees a homogeneous load dis-
tribution.

The number of points shown in Table I is actually not
large for a fully three-dimensional (i.e. no symmetries
imposed) finite-difference simulation. For example, we
can compare these numbers to a binary black hole evolu-
tion with around the same number of orbits using Carte-
sian grids and adaptive mesh refinement [19]. A typi-
cal state-of-the-art simulation uses six refinement levels
around each black hole with 643 points on each level, and
four coarse grid levels with 1283 points. This amounts to
a total of 2 × 6 × 643 + 4 × 1283

≈ 2263 points. In
the case of non-spinning, equal-mass black holes one can
make use of the symmetry of the problem and reduce the
total number of points to 6 × 643 + 1283

≈ 1543. Re-
gardless of the use or not of symmetry and the location
of the outer boundary, the number of points around each



5

Nr ×Nang ×Nblocks = Ntotal speed (h−1) CPU (h)

19× 292
× 192 = 1453 2.83 67844

22× 292
× 192 = 1533 1.86 103226

16× 292
× 384 = 1733 2.42 158678

Table I: Speed and CPU time for three resolutions. Nr and
Nang are the radial and angular number of points per block,
respectively, as described in the text. The speed is expressed
in units of the total irreducible mass per hour.

black hole in a state of the art AMR simulation is around
6 × 643

≈ 1163.
We have tested the performance of our multipatch par-

allelization scheme for the evolution of a single black hole.
In Fig. 4 we show a strong scaling test for up to 3, 000
processors (cores), in which the total number of points
is kept fixed while increasing the number of processors.
We see that the speed of the code has a linear depen-
dence on the number of processors. Similarly, in Fig. 5
we show a weak scaling test, where the load per proces-
sor is kept fixed while increasing the number of processors
used. The drop in speed in this case is about 15% over a
range of 10 to 3,000 processors. We have not attempted
to go beyond this number of cores.

The phase errors in the waveforms shown in the next
section are rather large compared to state-of-the-art sim-
ulations (in particular, compared to an AMR one such as
the one mentioned above). Since the code scales well and
the number of points used in this paper (shown in Ta-
ble I) is reasonable for a finite-difference evolution, in
principle we could improve the accuracy of the simula-
tions shown in the next section while still using modest
computational resources. What has prevented us from
doing so is a purely technical obstacle. The computa-
tional infrastructure used in this paper, SpEC, was orig-
inally designed for pseudo-spectral evolutions, which are
extremely efficient in terms of memory. For that reason
SpEC currently stores in memory many more variables
than are actually needed for evolving the system. As a
result, in our FD simulations because of memory con-
straints we actually end up using a few cores per node
and a rather large number of nodes.

V. RESULTS

Figure 6 shows the location of the centroids of the
apparent horizons for the highest resolution simulation.
The black holes complete about six orbits before reaching
the merger regime.

A. Convergence of the constraints

A way of checking the consistency of the numerical so-
lution is monitoring the constraint violations, since they
are not enforced during the evolution. In Fig. 7 we plot
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Figure 4: Strong scaling test for a single black hole. The
speed of the code depends essentially linearly on the number
of processors, almost perfect scaling.
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Figure 5: Weak scaling test for a single black hole. There
is only a 15% drop in speed as the number of processors is
increased while keeping the load per processor fixed.

the L2 norm of all the constraint fields of the first order
generalized harmonic system, normalized by the L2 norm
of the spatial gradients of the dynamical fields, as defined
in [14]. We show three runs with different resolutions.

Figure 8 shows the convergence exponent of the L2

norm of the normalized constraint violations, which is
around four, as expected (cf. Sec. IVB). The conver-
gence exponent n is defined as

βn
− 1

βn − αn
=

C1 − C3

C2 − C3

(1)

where α is the ratio between the medium and coarse
resolution and β, the ratio between the fine and coarse
one. C1, C2, and C3 represent a given quantity at coarse,
medium and fine resolutions, respectively.

The uniform convergence is lost around t ∼ 800 M , at
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Figure 6: Black hole orbits.

which time the values for the coarse and medium resolu-
tions intersect, as is seen in Fig. 7.

We stop our simulations when the characteristic speeds
at the excision boundary change sign, which means that
there is spurious information entering the domain. That
moment is characterized by a blow-up of the constraints.
This feature is due to the inadequacy of the rather simple
gauge conditions used here at times close to merger. At
the time the simulations of this paper were performed,
we used the same simple conditions used then by the
Caltech-Cornell collaboration, namely, keeping the gauge
source functions fixed in the co-moving frame. Since
then, better conditions have been developed, which do
allow simulations to go through merger and ringdown
[11]. For the purposes of this paper, however, following
six orbits of an inspiral is sufficient.

B. Waveforms

Waveforms are computed via the Newman-Penrose
curvature scalar Ψ4 as in [20]. Subsequently we
decompose Ψ4 in spin-weighted spherical harmonics

−2Yℓm(θ, φ). We focus our discussion to the ℓ = 2, m = 2
mode. The extraction is done at r = 50 M .

Figure 9 shows the real component of Ψ4

We see that they all agree at early times and drift
apart during the later stages of the evolution. A more
meaningful comparison is shown in Figs. 10 and 11, where
we plot amplitude and phase of the extracted wave. The
differences between the finite differences waveforms and
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the spectral one are shown in Figs. 12 and 13 for the
amplitude and phase, respectively.

VI. REMARKS

In this paper we have shown that we can evolve orbit-
ing black holes in a stable way using a high-order mul-
tipatch approach and that this method scales well with
the number of processors. As a result, we expect to be
able to achieve good accuracy while still using only mod-
est computational resources. These results also suggest
that multipatch methods are an excellent alternative to
AMR, with benefits of simplicity and O(N) scaling for
improving resolution in the wave zone. Finally, multi-
patch methods will allow one to use the same grid to
evolve both metric and matter fields for a binary pair

composed of a black hole and neutron star, allowing the
advantages of high-order methods without the drawbacks
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Figure 12: Differences in the Ψ4 amplitude between the finite
difference and the spectral results.

0

0.5

1

1.5

2

2.5

3

3.5

4

 0  100  200  300  400  500  600  700  800  900

 Ψ
4 

ph
as

e 
di

ffe
re

nc
e 

at
 r

=
50

M

(t-r)/M

 

coarse
medium

high

Figure 13: Differences in the Ψ4 phase between the finite
difference and the spectral results.

of a hybrid spectral-finite difference approach.
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