The Noncommutative Wiener Lemma, Linear
Independence, and Spectral Properties of the Algebra
of Time-Frequency Shift Operators *

Radu Balan
University of Maryland
College PArk, MD 20742
rvbalan@math.umd.edu

December 3, 2008

Abstract

In this paper we analyze the Banach *-algebra of time-frequency shifts with
absolutely summable coeflicients. We prove a noncommutative version of the Wiener
lemma. We also construct a faithful tracial state on this algebra which proves the
algebra contains no compact operators. As a corollary we obtain a special case of
the Heil-Ramanathan-Topiwala conjecture regarding linear independence of finitely
many time-frequency shifts of one L? function. We also estimate the coefficient
decay of the inverse of finite linear combinations of time-frequency shifts.

1 Introduction

The Time-Frequency representation of the Heisenberg group has received a lot of attention
for the past 20 years with the advent of Gabor analysis. Many methods and techniques
have been developed and a rich body of results has been obtained. For a nice account of
such results we refer the reader to the excellent book [9].

For t € R? and w € R% we denote by S; the time shift operator, by M,, the frequency
shift operator, and by Uy, the time-frequency shift operator defined, respectively, by:

Sp: L'(RY) — PR, S,f(2) = flz—1) (1)
M, : I’(RY) — LP(RY) | M, f(z) = ™" f(2) (2)
Upw: LP(RY) — LP(RY) , Upnf(z) = MySif(z) = e f(x —t) (3)
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For a Banach space X, we let B(X) denote the Banach space of bounded operators on
X with the usual operator norm. Consider now the Banach algebra (see [22, 23] for
definition and properties of Banach algebras) of time-frequency shifts on L*(R%) with
absolutely summable coefficients:

A={T e BL*(RY)) | T= Y alx, |Tla:= ) lea| < oo} (4)

AeR2d AeR?2d

Note the following: (i) for any T' € A, the support supp(T) of its generating sequence c,
supp(T) = {\ € R* | ¢y # 0} is always a countable set; (ii) this support is not assumed
to have any lattice structure.

Wiener’s lemma states that if a periodic function f has an absolutely convergent
Fourier series and never vanishes, then its reciprocal 1/ f has also an absolutely convergent
Fourier series. In Banach algebras language the same result can be restated as follows.
Consider the Banach algebra

Aw ={T € BIL*(RY)) | T=)_ caSu, [Tllay =Y leal} (5)

ncZd n

which is a x-subalgebra of B(L*(R?%)). Then Wiener’s lemma asserts that, if T € Ay is
invertible in B(L?(RY)), then T~! € Ay. Such algebras are called inverse closed (see e.g.
12]).

Many generalizations of this result appeared in literature. We will mention here four
extensions that set the context of our results.

The theory of almost periodic functions contains the following result. Consider the
Banach algebra

Aup ={T € BIPRY) | T=3 e | ITlas = 3 lad <o} (6)

tcRd tcRd

of absolutely summable linear combinations of arbitrary real shifts. Then using the Bohr
compactification of R ([20]), it follows that A 4p is an inverse closed algebra in B(L?(R4)).
More explicitly, if T = ", _, ¢AS) for some countable subset A C R%, and Y, [ea| < o0,
then 77! = > . d,S,, for some (in general) other countable subset ¥ C R?, and
absolutely summable complex coefficients ) . |d,| < 0o. See also [26] for an extension
to matrix valued almost periodic functions.

In the context of time-frequency analysis Grochenig and Leinert [12] obtained a discrete
noncommutative Wiener lemma as follows. Fix «, 8 > 0 and a subexponential weight v
(see section 2). We let A,.qr(a, B) denote the operator algebra

Avar(a, ) ={T € BIL*RY) | T= Y arSaxMp | IT||a, := llallio = > vlk,D)]ar|}
klezd k,lezZd
(7)



where ||al|;, is the v-weighted ' norm of a. Then, using Ludwig’s theorem on symmetric
group algebras of nilpotent groups ([21]), the authors proved in [12] (Theorem 3.1) that
Ay.cr(a, B) is inverse closed in B(L*(R%)). The algebra A,.q;, is naturally associated to
the twisted convolution algebra (I1(Z>?), 1), where

(atgb)(m,n) = Z Wby €2TOMR) »

k,leZ?

In this setting, the above result is equivalent to saying (Theorem 2.14 in [12])that for any
a € [1(Z*) so that the convolution operator L, : [?(Z??) — [?(Z*?), x — L,(x) = afiyx, is
invertible in B(I?(Z2?)), then its inverse is of the form L ! = L, for some b € [}(Z??). The
proof of this result relies heavily on abstract results on group algebras of locally compact
nilpotent groups ([21],[17]). As the authors point out, analyzing spectral properties of
group algebras is not usually an easy business.

Again in the context of time-frequency analysis, Grochenig in [11] translated a result
by J.Sjostrand [28] using the modulation space M2>!. The operator algebra

S, ={T € B(L*(RY)) | T = /
R
(9)

is shown to be inverse closed in B(L*(RY)).
Another example of an inverse closed algebra is furnished by the Baskakov class of

matrices that have some off-diagonal decay. In [5] Baskakov proves the Banach algebra:

B, = {A= (Ann)mpezs € BIP(ZY) | ||Allp, == Y v(k) sup [Aymi| < o0} (10)

kezd meZe

with v a subexponential weight is inverse closed and also obtains estimates of the entries
of the inverse matrix. The unweighted version of this result had been proved in [8] ([30]).
These results have been obtained also independently by Grochening and Leinert in [13]
using a Banach algebra technique. In [3] we used Baskakov’s result to establish localization
results for Gabor like frames.

In this paper we extend previously known results to the Banach algebra (4) and its
weighted version (14). Beside the intrinsic interest of a new Wiener type lemma, we are
motivated by two problems in time-frequency analysis. One problem concerns the Heil-
Ramanathan-Topiwala (HRT) conjecture, the other problem relates to the time-frequency
analysis of communication channels.

The HRT conjecture (see [14]) states that finitely many distinct time-frequency shifts
of one L? function, are linearly independent (over C). This means, for any finite subset
of R¥, A c R* and g € L*(RY),

Y alUag=0=c,=0YA€A (11)
AEA

LDV Tl = lolles = [ dasupenal V(aplota. )}



When A is a subset of a lattice, the claim was positively proved by Linnell in [19], however
the general case, as far as we know, is still open. The problem can be recast into a
spectral analysis problem. More specifically the HRT conjecture is equivalent to proving
that for any finite subset A C R??, and complex numbers (cy)ea, the bounded operator
T =" cp aUx has no pure point spectrum. Motivated by this problem, one is naturally
led to an algebra of type (4). Our result in this paper (Theorem 3.10) is one step toward
analyzing spectral properties of such operators. Here we prove that any T in A (in
particular this works for finite linear combinations of time-frequency shifts) cannot have
isolated eigenvalues of finite multiplicity. For our setting, this is the best result one can
hope to obtain (see Remark after Theorem 3.10).

In communication theory, a multipath time-varying communication channel is mod-
eled as a linear superposition of time-frequency shifts (see [29]). Often the channel model
contains finitely many time-frequency shifts, or infinitely many but fast-decaying coeffi-
cients, so naturally, the channel transfer operator is in algebra A,. One problem is channel
equalization (or deconvolution) by which one has to invert the channel transfer operator.
Assuming this operator is invertible on the space of finite energy signals, then our result
says the inverse is also a superposition of time-frequency-shifts, with absolutely summable
coefficients. The coefficients decay rate gives the convergence rate of finite approximation
methods. In this context our results (Theorems 3.6, 3.12) give estimates of this decay.
We also obtain necessary and sufficient conditions for operators in A to have bounded
support (Theorem 3.14).

Another contribution of this paper is the explicit construction of a faithful tracial state
on A that yields several consequences. In particular we show that A does not contain any
compact operator, from where we obtain as a corollary the partial answer to the HRT
conjecture. We prove also Paley-Wiener type extensions for this algebra.

Throughout this paper we use the following notations. For a set I, |I| denotes the
cardinal of set I (i.e. the number of points contained in I); for z € R?, |z| denotes its
max-norm ([*°), whereas ||z|| denotes the Euclidian (1) norm; B,(z) denotes the closed
ball of radius 7 centered at x with respect to norm |- |, B.(z) = {y € R | |z —y| < r};
thus {B;(n) ; n € Z¢} forms a covering (but not disjoint) partition of R%; E,(z) denotes
the Euclidian closed ball of radius r centered at x, E,(x) = {y € R | |z —y|| < r}; F
denotes the unitary Fourier transform with the following normalization:

1 —iwx
—(27r)d/2 /Rde f(x)dx

We will frequently use )\, i to denote time-frequency points in R??, e.g. A\ = (t,w) of
components t,w € R%. For a weight v we denote by [X(R™) (or just I} when no danger of
confusion) the space of functions ¢ : R" — C so that [|c[|;; := Y g» v(2)[c(x)| < co. For
0 < p < oo we let P(R") (or merely [P, when no danger of confusion) denote the space
of functions ¢ : R® — C so that ||c[|, := (3 ,cgn |c(2)[P)? < co. We will frequently use
the notation ¢, = ¢(x). The support of ¢ is defined by supp(c) = {\ € R" | ¢\ # 0},

[ Fiw) =




and for any ¢ in [P with 0 < p < oo or [} it is always a finite or countable subset of R".
For p = oo, [* represents the set of bounded functions on R"™, not necessarily of finite
or countable support, and ||¢||.c = sup, |¢;|. For any p > 1, [ is a Banach space with
|| - ||, norm. Note IP(R") is not separable for any p. In particular I*(R™) does not have a
countable orthonormal basis. IP(R") and I}(R™) are the corresponding L” and L! spaces
for R™ endowed with discrete topology.

The organization of this paper is the following. Section 2 introduces weighted algebras
constructions; Section 3 contains our main results. Section 4 contains comments on
different approaches in prior literature, and Section 5 contains proofs of these results.

2 Weighted Time-Frequency Banach algebras

In this paper a weight v is a nonnegative and radially non-decreasing function on R¢ so
that v(0) = 1 and v(—z) = v(z). Let w : RT — R* be the function w(r) = maz=,v(x).
We define the following (see also [13]):

(a) The weight v is said submultiplicative if it satisfies

v(x +y) < v()v(y) (12)
(b) The weight v is said to satisfy the GRS (Gelfand-Raikov-Shilov) condition if

lim (w(nr)Y" =1, ¥r>0 (13)
(c) The weight v is called admissible if it is submultiplicative and satisfies the GRS
condition.

Example 2.1 [13]

Typical examples of admissible weights are the polynomial weights, v(x) = (1 + ||z]])*
for some s > 0, and the subexponential weights, v(x) = eo‘”m“ﬂ, for some o > 0 and
0 < 8 < 1. More generally, the following is also an admissible weight (see [13]), v(x) =
el#1” (1 + ||z|))*logt (e + ||z||), where o, 5, >0, 0 < 3 < 1.

Note the exponential weight v(x) = eIl with o > 0 is not admissible. It is submulti-
plicative, but does not satisfy the GRS condition.

Throughout this paper all the weights are assumed at least submultiplicative. Except
for Lemma 5.2 and the proof of Theorem 3.12, all weights considered in the rest of the
paper are admissible. In Lemma 5.2 we consider the less restrictive submultiplicative
weights to cover the case of exponential weights needed in the proof of Theorem 3.12.

For a weight v, we let A, denote the algebra of time-frequency operators with [}
summable coefficients,

Ay ={T =) eUx 5 |T|a, =) v(N)]ea| < o0} (14)

A A



This is a subalgebra of the bounded operators B(L?*(R%)). Furthermore, for every T' € A,,
||| gr2ray < ||T|l4,- Thus the C* algebra A obtained by closing any one of A, with
respect to the operator norm || - || gz2(ray) includes A and hence every A,.

For two Banach algebras A and B, we call A an inverse closed algebra in B, if any
element = € A that is invertible in B, is invertible in A, 7! € A. Neimark in [22] calls
(A, B) a Wiener pair, whereas Baskakov in [5] calls A a full algebra in B.

3 Main Results

In the following v denotes an admissible weight. In particular v can be the constant
function v = 1 (the unweighted case).

Theorem 3.1 (Spectral Invariance) Assume T' = ), cxUx € A,. Then the spectral
radii with respect to algebras B(L*(R%)) and A, are equal to one another,

TB(L2(Rd))(T) =14,(T) (15)

&

Theorem 3.2 (Wiener Lemma for TF Operators) The algebra A, is inverse closed
in B(L*(RY)). Eaplicitely this means, if T =Y, 5 cxUx for some ¢ € I*(R*) with A =
supp(c), and T is invertible in B(L*(RY)), then there is d € IY(R?*) with ¥ = supp(d)
so that T~' = Y opes dolUs. O

Immediate corollaries of this result are the following:

Corollary 3.3 For any T € A, its spectrum with respect to the algebra A, coincides to
the spectrum with respect to the algebra B(L?*(R%)). Explicitely this means

SPB(L2(R4)) (T> = SPA, (T) (16)

&

Corollary 3.4 Assume T = )", gea AUy with Y, |ex] < oo is invertible in B(L*(R%)).
Then T is invertible in all B(LP(R?)), with 0 < p < c0. ©

Corollary 3.5 Let T =Y, .gamS; be a bounded invertible operator on L*(R?) so that
o llmullap < oo Then T™' =3, ganiS; with ng € AP so that 3, ||nilap < 00. &

The following theorem gives an explicit estimate of the 4, norm of the inverse when
the operator has finite support.



Theorem 3.6 (Norm of the Inverse) Assume T' =  ,_, caUx with [A] = N < oo
and Ry = maxyep ||A||. Assume T is invertible in B(L*(R?)), and hence in A, as well
(by Theorem 3.2). Denote A = | T %12 may, B = |TlB12may, and p = max(1,2Ro),
and assume a polynomial weight w(x) = C(1 + x)™ for some C' > 0 and m € N. Then

C,OmHTHAv (m+N)' (A+B)m+N

71! <
1T 0, < == o

(17)

Consider now G = {gm.n:a.p := Usnzramg | m,n € Z?} a Gabor frame for L?(R?), with
a,f >0, af < 1, and a dual Gabor frame (not necessarily the canonical dual frame)
G = {Gmnas = Upnonamd | m,n € Z4}. For details on Gabor frame theory we refer the
reader to e.g. [9]. The following theorem gives an explicit construction of the faithful
tracial state:

7:A—=C | 7(2 aly) = c (18)
A

This trace extends to A, the completion of A with respect to the operator norm, which
is a C* algebra.

Theorem 3.7 (Trace on A) For any T € A,

1 ) 1 -
/y(T) = (Oéﬁ)d M,ljl\/'nloo (2M + 1)d(2N + 1)d Z Z <Tgm,n;a,ﬂygmyn;a,ﬂ> (19)

[m|<M |n|<N
is the faithful tracial state (18) on A, independent of the choice of the Gabor frame G. <
Next we have

Corollary 3.8 For any operator T =), c Uy € A

eal < llelloe < llefle < 1T peremay < llefl (20)
and
o =7(U3T) = lim (alﬁ)d (2M+1)d1(2N+1)d D Ui T gmmas: Gmmas) (21)
7 |m|<M |n|<N
&

As a corollary of this result we obtain that A (and hence A as well) cannot contain
compact operators:

Corollary 3.9 Assume T € A is a compact operator. Then T = 0. &



Since for any finite set A € R*, and complex scalars (cy), the operator T' =Y, _, exU,
is in A, we obtain the following theorem that gives a partial answer to the HRT conjecture:

Theorem 3.10 Any operator T € A (in particular, any finite linear combination of time-
frequency shifts) cannot have an isolated eigenvalue of finite multiplicity. Hence the pure
point spectrum, if it is nonempty, can only contain eigenvalues of infinite multiplicity, or
ergenvalues that belong to the continuous part of the spectrum as well. <

Remark 3.11 This theorem is optimal with respect to algebra A. This means that there
are operators in A that have isolated eigenvalues but of infinite multiplicity. Indeed, con-
sider the Gaussian window v(x) = exp(—x?/2) and the Riesz basic sequence it generates
for some parameters o, > 1, T' = {Ymmap ; m,n € Z}. Let 7 be the canonical dual
window. Note that both v,5 € M (by [12]). Now consider the orthogonal projection P
onto the span of I'. It is immediate to prove that P commutes with all time-frequency
shifts Upgonma- Hence P belongs to the commutant {Upeo, Up 2ra, I} which is the von
Neumann algebra generated by Uy, a,2xm/3- The decomposition of P with respect to these
unitary generators is given by the Wezler-Raz formula:

P = 5 CnmUﬂm
) «’ g

m,ncZ9

with ¢ m = W(%’m%%,%. The coefficients are absolutely summable which implies
P € A. But clearly the spectrum of P consists of only two elements, 0 and 1, each of
infinite multiplicity since otherwise this would contradict the Theorem 3.10. The multi-
plicity of eigenvalue 0 represents the deficit of I', defined as the smallest cardinal of a set
of vectors so that its union with ' becomes a Riesz basis for L*(RY). This is the dual
problem to the excess problem we analyzed in [1, 2, 3, 4. Thus the deficit of any Gabor
Riesz basic sequence with generator in M can only be infinite (zero is ruled out by the
Balian-Law no-go result).

For finite support operators as above, we can estimate the decay rate of the coefficients
of the inverse operator. In general such operators are in A, for any subexponential weight
v. Hence the inverse operator would have coefficients that are summable with respect to
the same weight. Even more can be said:

Theorem 3.12 Let T = Z,\EA cxUx be an invertible operator with A C R*? a finite set.
Then there is 6 > 0 so that if T~ =3 gea d,U, then

> eMd,| < oo (22)

,uGR2d



This result generalizes the classic statement (see e.g. [31]) that the reciprocal of a trigono-
metric polynomial that does not vanish on the unit circle has exponentially decaying
Fourier coefficients. Our result is stronger than just simply saying the coefficients of the
inverse operator should decay exponentially fast. It also controls the “tail” of the sum-
mation. To make this point more precise, we notice that (22) is equivalent to a Wiener

amalgam type norm:
>N jd,l < oo (23)

ncZz2d nEB1(n)

where Bj(n) is the ball of radius 1 centered at n, By(n) = {\ € R?*?| [n— )| < 1}. Hence
there is a constant C' > 0 so that for all R > 0,

> dy| < Ce (24)

pER2|u|>R

Another equivalent statement to Theorem 3.12 is given by the Corollary 3.13 below.
First we need to introduce a Banach space. Let us denote by L?*°(R¢ x I) the mixed
norm Banach space

LRI ) ={f:R'xI—=C; ||fl3 = su;l)/d |f(x,y)?dr < 00} (25)
yel JR

where I € R? is a compact neighborhood of the origin. Then the unitary U, extends
from L?(R%) to L>*(R? x I) simply by:

Unf(z,y) =W fz—ty) | A= (tw), (z,y) eR x I (26)

An operator T = >, c\U, extends to T = ), ¢,U, under some conditions. Clearly all
finite or compactly supported operators of A can be extended to L>*°(R¢ x I). Theorem
3.14 gives necessary and sufficient conditions for such an extension to exist.

Corollary 3.13 Let T' = ), ., caUx be a finitely supported invertible operator in A.

Then for some compact neighborhood I of the origin whose size depends on the operator
T, the inverse T™' =Y d,U, extends to L>>*(R x I) to the inverse of the extension,

that s to:
T'=) d,U, (27)
n
&

An alternative statement is that extension and inversion operations commute for some
compact neighborhood of the origin.



Theorem 3.14 1. Assume T =, ., c&xUs € A so that A C R? x Eq(0) for some
Q > 0, where Eq(0) = {w € R | ||w|| < Q}. Then for any p > 0, T extends to
X, = L*>*(R* x E,(0)) with operator norm bounded by:

IT|5x,) < Ce® (28)
for C' = ||T 4.

2. Conversely, assume T =3, _, cxUy € A can be estended to X, for all p > 0, with
a norm bounded as in (28), for some C > 0 and Q > 0 independent of p. Then
supp(T) C R% x Eq(0).

3. Assume T = >,y cxUx € A so that A C Ep(0) x R* for some D > 0. Then
for any p > 0, the operator S = F*TF, where F denotes the Fourier transform,
extends to X, with operator norm bounded by

ISll5cx,) < Ce” (29)
Jor €= [T 4-

4. Conwversely, assume the Fourier conjugate F*TF of T =3, 5 caUx € A can be ea-
tended to X, for all p > 0 with a norm bounded as in (29) with C' and D independent
of p. Then supp(T) C Ep(0) x R

&

4 Connexions to Prior Literature

In this section we discuss the two ingredients developed in this paper: Wiener lemma
type results, and the faithful tracial state in Gabor analysis. For each of these results we
discuss prior results and approaches presented in literature, strengths and shortcomings
of each method. For precise definitions and more details of the results we refer the reader
to the corresponding paper.

4.1 Discussion about Wiener Lemma and Alternate Proofs

The closest paper to our analysis is [12] by Grochenig and Leinert. The authors proved
the analogous statement to Theorem 3.2 but only for the lattice case, that is the algebra of
time-frequency shifts from a lattice. As an off-shot of this approach, the authors obtained
a very nice localization result regarding dual Gabor frame generators. More specifically,
if {gmnap; m,n € Z} is a Gabor frame for L?(R?) with g € M, the modulation space
associated to an admissible weight v, then the canonical dual frame {Gm n.a.5 ; m,n € Z%}
has the generator § € M}. One may ask whether the methods used in that paper hold
in our case. The answer is affirmative. Indeed, the main tool used in [12] is the fact

10



that the Banach algebra [1(Z2?), with the twisted convolution f, is symmetric which in
turn is a consequence of Hulanicki’s and Ludwig’s results on symmetric group algebras
associated to nilpotent groups. The very same result applies to our case where the discrete
countable group Z?¢ is simply replaced by R? with discrete topology. Then, as mentioned
in introduction, Theorems 3.2 and 3.1 become consequences of Hulanicki’s theorem from
e.g. [16]. However, by invoking a general abstract result one does not obtain the norm
estimates of Theorem 3.7 nor the localization results of Theorems 3.12 and 3.14. We
preferred to present an explicit and self-contained proof of Theorem 3.2 for two reasons:
(i) for the benefit of reader unfamiliar with the symmetry property of nilpotent group
algebras; and (ii) to obtain explicit estimates of the inverse operator coefficients.

We mentioned earlier an important consequence contained in [12], namely the local-
ization result of the canonical dual Gabor frame generator. One may ask if there is an
analogous consequence to our more general case. The most natural guess would be to
analyze the canonical dual of irregular Gabor frames. Unfortunately, unlike the regular
(i.e. lattice) case, the frame operator may not necessarily belong to A, and hence no
conclusion can be drawn from our analysis. Fortunately one can use another approach
to recover the results of [12] and prove the localization result in the irregular case. This
alternative approach is used in [10, 7], and independently in [3, 4], together with the
Baskakov’s result mentioned earlier in the introduction, or other similar variations (e.g.
the Sjostrand’s lemma in [28]). Indeed, the frame operator of an irregular Gabor frame
with generator in M* has a matrix representation with respect to a “nice” Gabor frame
that is dominated by a Toeplitz matrix with I! generating sequence. In [3] such frames are
called ! self-localized frames. The associated matrix of such frames admits a pseudoin-
verse, because of frame condition. Using Baskakov Theorem and holomorphic functional
calculus one obtains that the pseudoinverse has the same off-diagonal decaying property
which proves the localization result for the canonical dual frame. In the regular case, the
inverse of an invertible operator that is a linear combination of time-frequency shifts from
a lattice is also a linear combination of time-frequency shifts on the same lattice. (Here
we use “linear combination” to denote the generators of a C* algebra, hence convergence
in operator norm). Thus distinct time-frequency labels associated to the inverse opera-
tor are always well separated. This fact combined with Baskakov’s result applied to the
pseudoinverse matrix gives an alternative proof to the case considered in [12] (see also
[13]).

The irregular case is fundamentally different from the lattice case. It is true that an
operator in A has support always contained into a countable generated discrete group of
the time-frequency plane. However the main obstruction in the irregular case is the fact
that the time-frequency labels of the inverse of an operator 7" € A are not necessarily
well-separated, even when 7" has finite support. Indeed, if T'= )", , exUy with |[A] < oo is
invertible in B(L*(R?)), then T~! = 3~ d,U\ with convergence in operator norm in A.
However, in general, supp(T~!) has accumulation points in R%. This fact makes difficult
the application of Baskakov’s Theorem to irregular frames. To better understand this

11



obstruction, we remark here only that the conclusion that can be drawn along this line
of reasoning is the following statement. If 7' = >, ¢ U, € A is invertible in B(L*(R%))
then its inverse 771 = . duU,, satisfies

sup |d,| < oo (30)

keZz2d pe B (k)

Clearly this statement is weaker than Theorem 3.2 that claims ) |d,,| < oo.

4.2 Faithful Tracial States in Gabor Analysis

In [6] Daubechies, Landau, and Landau present an explicit formula for the faithful tracial
state on the W* algebra W, generated by {MormaTrw ; m,n € Z}. They showed that
W, is a II; factor when ab ¢ Q (result also known from the rotation algebra theory,
see e.g. [24]), that has a unique faithful tracial state. In general, regardless of rationality
of ab, a faithful tracial state is defined as the coefficient ¢ of its strongly convergent
uniquely defined decomposition T = Zmn CmnUnb2rma. They showed that this number
(co,0) is computable using the formula

1 J
= — T1;,1 31
€o0,0 ab k:0< Iy [k> ( )

where J is the largest integer smaller than or equal to ab, and the J + 1 intervals Iy, I,
12

. yIy_1, Iy are given by [0, %], (2, 2], s [Ja_l, %],[%,b].

In this paper we extend this tracial state from the algebra generated by time-frequency
shifts on a lattice to the algebra generated by all time-frequency shifts. Note however
the following limitation of our method. In [6] the faithful tracial state applies to a W*
algebra, whereas our Theorem 3.7 applies only to a C* algebra. The tracial state v of (18)
cannot be extended to the W* algebra generated by A since this W* algebra is the entire
algebra B(L*(R%)) (which does not admit a faithful tracial state). Consider now the
series of C* algebras (Cgp)ap>0 cach generated by respectively {Unpomma ; m,n € Z} (we
restrict ourselves here to the one-dimensional case for convenience of comparison). For
any T € C,, for some a,b > 0, its trace y(T") can be computed either by (31), or by (19).
Our formula (19) has the advantage of being independent of lattice parameters (a,b). In
particular this shows the tracial states defined by (31) are compatible on operators that
belong simultaneously to two different W* algebras (for instance T' € C,p C CaapsNCp o).

We end this section with a comment on Theorem 3.10. In this paper we solve a
restricted case of the HRT conjecture, namely we rule out the existence of isolated eigen-
values of finite multiplicity for all finite linear combinations of time-frequency shifts. In
fact we obtain this conclusion for any operator of A, hence also for infinite linear com-
binations of time-frequency shifts with coefficients in [*. The other case that was ruled

out is the lattice case, that is when the finitely many time-frequency shifts are from a

12



lattice. This was beautifully proved by Linnel in [19]. One may ask whether the same
arguments hold in our more general case. There is a difficulty in trying to do so, namely
7 is a faithful tracial state on a C* algebra (in this paper) unlike the W* algebra W,
considered in [19]. This difference prevents us from having a similar proof in our setting.
We currently study ways to bypass this difficulty.

5 Proof of Results

The order of proofs is the following. First we prove the spectral invariance Theorem 3.1,
from where we derive Theorem 3.2. In the process of proving Theorem 3.1 we obtain the
norm estimate (35) used in the proof of Theorem 3.6. The corollaries 3.3, 3.4 and 3.5
follow directly from 3.2.

In Theorem 3.7 we construct the faithful tracial state on A, and therefore A. This
will be proved later in this section. From this result we will derive Corollaries 3.8, 3.9,
and Theorem 3.10. Theorems 3.12 and 3.14 will follow after an extension to the Banach
space L>*°(R® x I).

5.1 Proof of Theorems 3.1, 3.2, 3.6 and Corollaries 3.3,3.4,3.5

Theorem 3.1 is obtained in two steps. First step involves finite linear combinations of
time-frequency shifts. In the second step the spectral result is extended to the entire
algebra A.

Consider T'= ), ., cxUy with [A| < oo a finite linear combination of time-frequency

shifts. Note:
™= Y d,U,

oeA()
where:
AY = A4 A+ +A={M+ 4+ A, €AY (32)
do— — Z Cry C)\ne_itlw2€_it2w3 . e_itnflwn (33)

A,y Ay EA
M+t N, =0

where each A\ = (tg,wx). Then by Cauchy-Schwarz,

T4, = Y Idolo(o) < [AT]V2 sup Jo(o)]]|d]l2 (34)

e oeAl

We estimate next the three factors of the right-hand side and prove the following

13



Lemma 5.1 AssumeT =), , cxU, is an operator in A with |A| < oo and A C Eg,(0).
Then for any submultiplicative weight v, that is v(x +y) < v(x)v(y) for all z,y,

174, < (n 4+ D)2 w(nRo) - 1T sy (35)

where w(a) = supjq|=v(z) <.

Proof of Lemma 5.1

An upper bound for the cardinal of set A(™ in (34) is obtained as follows. Notice that
Ai + A = Aj + A therefore any permutation of terms in A\; + - - - + A,, would produce the
same point . Hence:

A < |{(Ryy ks hiay | R F Rk =0, Kk, ks > 03 (36)
(n+|[A])---(n+1)

|A! < (n+ D"

For the second factor in (34) we need to estimate the radius R, of a ball E(0) in R*
that includes all A®™. If Ry = maxyeal|||, then for R, = nRy we have A™ C Ey (0).
Since the weight v is radially non-decreasing,

max v(o) < w(nkRy) (37)
ceA)

The third factor in (34) is a bit more complicated. We need to use the following lemma,
which is of intrinsic interest:

Lemma 5.2 For any finite set of time-frequency points ¥ = {oy,...,0n} there is a
function g € L>(R%) so that {U, g ; 1 <k < N} is an orthonormal set. <

Assume this lemma is proved. Then we apply Lemma 5.2 to the set A = A4 --- + A
and we obtain, on the one hand

1Tl =11 Y doUsgl®= D ldo|* = lldll3

UEA(") o'eA(n)

and on the other hand
[T gll* < IT"?llgl|> = IT™|*

Thus we get:
ldll2 < [IT™]] (38)

Putting together (36,37,38) into (34) we obtain:
[T 4, < (n+ 1)‘A|/2w(nR0)||Tn||B(L2(Rd)) (39)

which proves Lemma 5.1. Q.E.D.
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Remark 5.3 Inequality (38) follows also independently from (20) of Corollary 3.8.

Taking the n'? root and passing to the limit n — oo we obtain:

T(T)_AU S T<T)B(L2(Rd)) (40)

Since the inclusion A, C B(L*(RY)) implies the inverse inclusion of the spectra
spp(r2may) (1) C spa,(T), one obtains rp(r2ray) (1) < r4,(T). This concludes the proof
of the spectral radii equation (15) for finite linear combinations of time-frequency shifts.
Before going to the second step, we prove Lemma 5.2.

Proof of Lemma 5.2

The statement is equivalent to finding a function g € L?(R%) so that (U,g,g) = 6.0,
forallo € A := (¥—X). Let 7 be the projection of A on the first factor R%, and €2 be the
projection onto the second factor R%. Thus A C 7 x€2. Notice both 7 and € are finite sets
of points of R, symmetric about, and containing the origin. Let Q\ {0} = {w1,...,wu}
be an enumeration of €2, and let 7,,in, Tmae > 0 be the radii of two balls around the origin
in R? so that B, . (0)N7T = {0} and 7 C E,,,.(0). We set g as follows:

where x denotes the usual convolution, and hq, hs, ..., hy; are constructed as follows. First
we construct inductively the sequence ¢y, s, ...,ty € R? so that:

1. (t1,w1) = (2ny + 1)7 for some integer ny € Z and ||t1|| > Trax

2. Given tq,ts,...,tx choose tgyq so that: (i) (tgi1,wrr1) = (2nge1 + 1)7 for some
integer ngy1 € Z, and (ii) [[tga|l > Jtall + -+ + el + 2M Tonae

With this choice for {¢,... ty}, we set:
hiy =1+ 14 4k (42)

where E' = E. . /(0) is the Euclidian ball of radius 7., centered at the origin, and 1,
1;.+, are the characteristic functions of E, respectively ¢, + E. Note that g is a sum of
2M “hbump” functions each supported inside balls of radius 7,,;, and each at a distance of
at least .4, from one another. Thus all translates with shifts from 7\ {0} are disjoint.
Hence (U,g,9) = 0 for all 4 = (t,w) € A with t € 7 \ {0}. It remains to check only
that (M., g,g) = 0. Using Fourier transform, this is equivalent to F(|g|*)(wx) = 0. But
the choice of ¢;, guarantees that F(hy)(wy) = 0 which concludes the proof of Lemma 5.2.
Q.E.D.

Now we are ready to go to step 2 of the proof of Theorem 3.1. Consider now T =
dYaalUy € A, Fixe > 0. Let A be a finite set so that Zl\eRQd\A lealv(A) < e Set
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To = > sepaUs and R = T —T,. Thus ||R|| < ||R||4, < &. For a more convenient
notation denote by s = (s,), and r = (r,), the coeflicients of Tj, respectively R,

SU:{CJ if o€l 7“,)2{ 0 if peA (43)

0 otherwise Cp otherwise

Now expand T" = (T, + R)™ as follows

™ — Zn: ZRleglezng . Rlegl — Zn: Z Z (T’klﬁsjlﬁ . ﬂ?”kLﬂSjL>)\ U)\(44)

m=0 k,j m=0 k,j \eR>2d

where k = (ky, ko, ..., kL), 7 = (J1,72,--.,j1) are vectors of nonnegative integers so that
ki +---kp =n—mand j +---+j, = m, and ¥ = rf---fr is the k-fold twisted
convolution. Then the A-coefficient expands into

_ k1 7i<a1,d17b1) jl 7i<cl,b27d1> kz 7i(a2,d27b2> j2 .
e = E : E : Tp € So1—p1 € Tpy—01€ So2—pa
p1, pL€R?A o1, .o €R2E
—i{cp—1,bp—dr_1) kL —i{ar,dr,—br) JL
€ Tpoo'L—le SO'prL(SO'L,)\

where p; = (a;,b;) and o, = (¢, d;) are the components of the 2L phase-space points
constrained by o = A as expressed by the last Kronecker term.

The next step is to change the summation variables and rearrange the terms as sug-
gested by Hulanicki in [15]. Let g, = p, — 0p—1 = (dp,b,), 1 < p < L, with convention
oo = (0,0). Also denote by V,, the unitary

(Vos)am(tw) = € sy 5.
Then ¢, turns into:

— ia1by k1. k2 kr, i1 —i{cy,do—dy jo —i{co,d3—ds
o = Z € ToiToa " Ty (Vlsj )016 < >(‘/23] )02—016 < )
p1,,prER24 O1,,0L

. e—Her—1,dr—dr-1) (VLS]L )UL_ULil 50&)\

=Y etk (A (Vas 1V )

p1, prER2
and thus
el < D IR | [(VisT i Vas - Vs (45)
Pl
Since
w\) <w(pr) - ...w(py) - wA\—p1—---— pr)

16



and

supp(Vis Vs -4V s) C (pr+ -+ pr) +A™ L A = A+ A+ A

m

we obtain

17", < Z( " )m o o(o) sup SO |((VisE - #(Ves | (46)

o N geAlm) proPL Ty

Now we will estimate the sum over A above similar to the estimation in (34). The cardinal
of A has been shown in Lemma 5.2 to be bounded by (m+ 1)*! and hence by (n+ 1)1
Note also that A™ C E,,z,(0) where Ry is a radius so that A C Eg,(0). Thus we get:

n 1/2
T, < () PRy 3 (2 ) s (D (Vis™) <vLsJL>>A|2)

m=0
(47)
By Lemma 5.1 the [? norm of the sequence s = (Vis/'f---4V;sL) is bounded by the
operator norm obtained by linear combinations of time-frequency shifts with coefficients
from s:

l[s]l2 < || Z AU B(r2may)
B

Note the operator associated to s is (up to a constant phase factor):

U51T31U52T32 et UﬁLTgL
Thus we get:
Isllz < I 7ol oy = 1 Toll Bz cmay (48)
which turns (47) into:
T4, < (n+ D™ (e + 1 Toll perzmay)” (49)

Now taking the n'* root and passing to the limit n — oo we obtain:
r4,(T) < e+ | Toll 2 mey
Since € > 0 was arbitrary, and ||Ty|] < ||T|| we obtain:
ra,(T) < Tl premey (50)
Since 74, (T") = (r4,(T))"™ we obtain:
ra(T) < 1775

B(L?(R%))
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and passing to the limit n — oo we obtain

74,(T) < 7p2may(T) (51)

The converse inequality is immediate from A, C B(L*(R?)). This ends the proof of (15)
and hence of Theorem 3.1. <

Now Theorem 3.2 and subsequent Corollaries are immediate. Theorem 3.2 and Corol-
lary 3.3 are consequences of Hulanicki’s Lemma (Proposition 2.5 in [17]; see also Propo-
sition 9 in [12]).

During the proof of Theorem 3.1 we obtained the estimate (35). We will use this in
proving Theorem 3.6.

Proof of Theorem 3.6

Assume T is invertible in B(L*(R?)). Then for A = ||T~!||72 and B = ||T|?,

0<A<T'T<B<o

=2 < 1. Thus

Note [|1 — A+BH B+A

2 2

which converges in operator norm in B(L?(R%)). The estimate (35) of Lemma 5.1 turns

nto:
2

2

A+ B A+ B
where A’ is the label set of 1 — 22T*T, and Ry is so that A’ C Eg (0). Since A’ C A— A
we have |[A'| < 2|A| = 2N and R < 2Ry, where Ry = maxyea ||A]| is so that A C Eg,(0).

Thus we get

[ TT|a, < (n+ 1) wnRp|1 -

7"

1T |4,

2 N B—A\"
< 1 2 _— T
< g3 0 wenr (575) T

For w(z) = C(1 + z)™ and p = max(1,2Ry), w(2nRy) < p™(1 + n)™ and for 6, =
(B—A)/(B+ A) we obtain

- 2Cp™ | T a, miNgn - 2CP™ HTHAU am g
1774, < ﬁZ(lﬂL”) o < 1+ B demHV > 60" lo=0,

n>0 n>0

Since 6y < 1, by direct summation and then differentiation we obtain (17) which ends the
proof of this Theorem. Q.E.D.
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5.2 Proof of Theorems 3.7, 3.10 and Corollaries 3.8 and 3.9
For any bounded operator T' € B(L*(R?)) denote by ayrn(T) the following expression

1
) = RGN + 17N + 1) %M %N(Tgm’”’“ﬂ’ i) (92)
Clearly |ax,n(T)| < C||T|| g(r2(ray), with C' independent of T, M, N.
Trace on A
First we need to show that for every 7' € A the limit limy; y_.c anrn exists and equals
co = Y(T), the O-coefficient of T'. We prove this statement in two steps. First we consider
the unitary generators of A, and then we extend by continuity to the entire A.

Lemma 5.4 Let U, denote the time-frequency shift with parameter A\ = (t,w). Then

. 1 if A=0
M,I}VIEOO“MMUA)_{ 0 if A#£0 (53)

Proof
We explicitely compute ap n(Uy)

1 2mimat inBw WT ~
() = T T S S e [ a0 (4

Im|<M |n|<N

There are now two cases:
Case 1. (t,w) = (%,2%]) for some K,J € Z% Then e?™mat = ¢2minf — 1 and

summations over m and n cancel the factor (2M + 1)4(2N + 1)4
amn(Uy) = /eQﬁmhg(x — Ka)g(z) dx

Recall G is a Gabor frame with dual frame G. By duality principle ([6],[18],[27]) G" =
{gmm;%’; : myn € Z4} and G’ = {Wﬁm,n;%,i : m,n € Z4} are Riesz basic sequences
biorthonormal to one another. Thus

<gJ,K;%,é>§> = (Oéﬁ)d(SJ,O(SK,O

and combined with (54) proves (53) in this case.
Case 2. (ta, %) ¢ Z*?. Then for ta ¢ Z¢ a direct computation shows

: 1 2mimat
e 2

|m|<M
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whereas for &2 ¢ Z¢ 1
lim ———— E e — ()
—00 d
N—oco (2N + 1) bt

This ends the proof of Lemma 5.4. Q.E.D.
By linearity we extend the result of this lemma to finite linear combinations of unitary
operators Uy:

L
. Co Zf OE{)\la"'7)\L}
Mljlvrgoo GMN(; e Un) = { 0 otherwise

Next the limit extends to the entire A by Lebesgue’s dominated convergence theorem:

M,N—o0

im apn Zc,\U,\ Zc,\ hm aMN (Uy) =c¢o = Zc,\UA (55)
)

Consider T = >, cxUy € Aand S =} d,U, € A. Then TS = }_ (cid),U, € A and
ST = 3_ (dte),U, € A. But now

Y(T'S) = (chd)o = ZCAd—)\ = (dfic)o = (ST (56)

A

This shows 7 is a tracial state on A. Finally, for T'= )", c,Uy € A. Then

T)=) |l >0 , y(I"T)=0iff T =0 (57)
A

Thus v is a faithful state.
Extension to A
When we set ¢ = g in (19), for any T € A we obtain:

V()| < IT] Ber2may)

Then we can extend 7 to the completion of A with respect to the operator norm. The
completion of A is denoted A and is a C* algebra. On this algebra, v remains a faithful
tracial state. This ends the proof of Theorem 3.7. Q.E.D.

Corollaries of Theorem 3.7

The proof of Corollary 3.8 is immediate. In particular equation (20) follows as in (57),
whereas (21) is a consequence of Lemma 5.4.

For proving the Corollary 3.9 note first that if 7" is a finite rank operator then
trace(T*T) < oco. But then

trace(T*T) = Z (T"T Grm,nsa, 85 Gmmsa,8) < OO

m,ncZd
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and thus limy n—eo aprn(T*T) = 0. By Corollary 3.8 this implies 7" = 0. Now consider
T a compact operator in A. Then T*T € A is a non-negative compact operator. Let
s > 0 be an eigenvalue of T*T and let P, denote the projection onto its eigenspace. On
the one hand P; is finite rank, since T*T" is compact, on the other hand, by holomorphic
functional calculus (see [25]), Ps belongs to C* algebra A. Then, as shown before, P; has
to vanish, which proves T'= 0. Q.E.D.

Proof of Theorem 3.10

Theorem 3.10 is a consequence of the holomorphic functional calculus. Assume T =
Y-y aUy has a finite isolated eigenvalue say jo. Since it is isolated, by holomorphic
functional calculus (see [25]) the orthogonal projection onto the eigenspace is given by

1 _

PHO = % F(ZI - T) le (58)
where I is a circle in the complex plan centered at jy so that it separates pg from the
rest of the spectrum of 7. Thus P,, € A. Since p has finite multiplicity it follows that
P,, has finite rank but then by Corollary 3.9, P,, = 0 which ends the proof of Theorem
3.10. Q.E.D.

5.3 Proof of Theorems 3.12 and 3.14

Theorems 3.12 and 3.14 characterize finite and half-compactly supported operators in A.
The proof of Theorem 3.12 is based on a spectral radius computation done in Lemma 5.1.
In turn, Theorem 3.12 allows the operator extension to the Banach space L*>* introduced
in Section 3. Once this extension is established, Theorem 3.14 follows easily.

For a p > 0 we set f(\) = eI’ X\ € R% For convenience we denote B, = Ay,
the Banach algebra of bounded operators in A whose coefficients decay exponentially fast
with rate p. Note the spectral radius of an operator 7' € B, is not the same as the spectral
radius in B(L?*(RY)), since f does not satisfy the GRS condition.

Proof of Theorem 3.12

Assume T = Y, _, caU, is an invertible operator on L*(R%) with finite support. Let
A, B > 0 be the bounds in

AllFIF < ITFI* < BIFI® . ¥f € L*(RY)

Then

2
-1 _ Nk
T = > R'T (59)

n>0

where R =1 — AJ%BT*T. Since R has finite support let N := |supp(R)| < co and Ry > 0
so that supp(R) C Eg,(0).

The goal is to show there exists a p > 0 so that 7! € B,. Clearly each term in (59)
belongs to B,. The only problem is to check the series converges in B,. To do so it is
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sufficient to show that
limsup(||R"||Bp)1/" <1 (60)

n—oo

Let us choose p = 4-Inz2H-. Then e’f||R|| < 1. Now we apply Lemma 5.1 to the

1
Ro"'"2(B=A)"
algebra B, since f(x) = eIl is a submultiplicative weight. We obtain:

(1B [l5,)"" < (n+ 1)MEVer || RY|

By choice of p we obtain (60) which ends the proof of Theorem 3.12. Q.E.D.

Let us turn now to Theorem 3.14. First we recall the mixed norm Banach space
introduced in Section. 3. For a compact neighborhood of the origin I we denote by
L?°°(R%xT) the mixed norm Banach space defined in (25). An operator 7' =, ., cAU €
A extends from L?(R%) to L>*(R? x I) by

fELPRIXI) — Tf(r,y)= Y e fe—ty) , Y(z,y)eR xI (61)
A=(t,w)eA

Assume that for all A = (t,w) € A, ||w| < Q, in other words A C R? x Eg(0). Assume
also I C E,(0), for some p > 0. Then

TSl < 3 sumpere ([ ) Pde)® < e 3 ]|l
AEA R A

Thus
T 52 maxr)) < || T|| (62)

This proves T’ extends to a bounded operator T on L*>*(R? x I). Let T denotes the
restriction of T to the “slice” indexed by y of L%°:

TW : *(RY) —» L*RY) , TWf(z)= > e “YUf(2) (63)
A=(t,w)

Note for A € R? x Eq(0) each T € A and

|T|| 200 (Rax 1) = SEI}) 1T || (z2may (64)
Yy

Now we are ready to prove Theorem 3.14.
Proof of Theorem 3.14
(1) The estimate (28) follows from (62).
(2) From (63), (64) and Corollary 3.8 we get:

e eal < |17 pamay < I1T1sex,)
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Combine now with (28) to obtain:
lea] < ClePtHw.y)

Assume there is a A = (f,w) € A so that [|w| > Q. Choose y € E,(0) so that (w,y) =
—pl|lw]]. Then
03] < Cerlll—)

should hold valid for all p > 0. At limit p — oo we get |cx| < 0 which proves that
supp(T) C R* x Eq(0).

(3) and (4) follows from (1) and (2) by noticing that Fourier transform is an inter-
twining operator between the translation shift and the modulation shift that switches the
modulation and translation parameters. Thus (3) and (4) reduce to (1) and (2). Q.E.D.
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