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Abstract

In this paper we analyze the Banach *-algebra of time-frequency shifts with
absolutely summable coefficients. We prove a noncommutative version of the Wiener
lemma. We also construct a faithful tracial state on this algebra which proves the
algebra contains no compact operators. As a corollary we obtain a special case of
the Heil-Ramanathan-Topiwala conjecture regarding linear independence of finitely
many time-frequency shifts of one L2 function. We also estimate the coefficient
decay of the inverse of finite linear combinations of time-frequency shifts.

1 Introduction

The Time-Frequency representation of the Heisenberg group has received a lot of attention
for the past 20 years with the advent of Gabor analysis. Many methods and techniques
have been developed and a rich body of results has been obtained. For a nice account of
such results we refer the reader to the excellent book [9].

For t ∈ Rd and ω ∈ Rd we denote by St the time shift operator, by Mω the frequency
shift operator, and by Ut,ω the time-frequency shift operator defined, respectively, by:

St : Lp(Rd)→ Lp(Rd) , Stf(x) = f(x− t) (1)

Mω : Lp(Rd)→ Lp(Rd) , Mωf(x) = eiωxf(x) (2)

Ut,ω : Lp(Rd)→ Lp(Rd) , Ut,ωf(x) = MωStf(x) = eiωxf(x− t) (3)
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For a Banach space X, we let B(X) denote the Banach space of bounded operators on
X with the usual operator norm. Consider now the Banach algebra (see [22, 23] for
definition and properties of Banach algebras) of time-frequency shifts on L2(Rd) with
absolutely summable coefficients:

A = {T ∈ B(L2(Rd)) | T =
∑
λ∈R2d

cλUλ , ‖T‖A :=
∑
λ∈R2d

|cλ| <∞} (4)

Note the following: (i) for any T ∈ A, the support supp(T ) of its generating sequence c,
supp(T ) = {λ ∈ R2d , cλ 6= 0} is always a countable set; (ii) this support is not assumed
to have any lattice structure.

Wiener’s lemma states that if a periodic function f has an absolutely convergent
Fourier series and never vanishes, then its reciprocal 1/f has also an absolutely convergent
Fourier series. In Banach algebras language the same result can be restated as follows.
Consider the Banach algebra

AW = {T ∈ B(L2(Rd)) | T =
∑
n∈Zd

cnSn , ‖T‖AW :=
∑
n

|cn|} (5)

which is a ∗-subalgebra of B(L2(Rd)). Then Wiener’s lemma asserts that, if T ∈ AW is
invertible in B(L2(Rd)), then T−1 ∈ AW . Such algebras are called inverse closed (see e.g.
[12]).

Many generalizations of this result appeared in literature. We will mention here four
extensions that set the context of our results.

The theory of almost periodic functions contains the following result. Consider the
Banach algebra

AAP = {T ∈ B(L2(Rd)) | T =
∑
t∈Rd

ctSt | ‖T‖AAP :=
∑
t∈Rd

|ct| <∞} (6)

of absolutely summable linear combinations of arbitrary real shifts. Then using the Bohr
compactification of Rd ([20]), it follows thatAAP is an inverse closed algebra inB(L2(Rd)).
More explicitly, if T =

∑
λ∈Λ cλSλ for some countable subset Λ ⊂ Rd, and

∑
λ∈Λ |cλ| <∞,

then T−1 =
∑

σ∈Σ dσSσ, for some (in general) other countable subset Σ ⊂ Rd, and
absolutely summable complex coefficients

∑
σ∈Σ |dσ| < ∞. See also [26] for an extension

to matrix valued almost periodic functions.
In the context of time-frequency analysis Gröchenig and Leinert [12] obtained a discrete

noncommutative Wiener lemma as follows. Fix α, β > 0 and a subexponential weight v
(see section 2). We let Av;GL(α, β) denote the operator algebra

Av;GL(α, β) = {T ∈ B(L2(Rd)) | T =
∑
k,l∈Zd

ak,lSαkMβl | ‖T‖Av := ‖a‖1,v :=
∑
k,l∈Zd

v(k, l)|ak,l|}

(7)
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where ‖a‖1,v is the v-weighted l1 norm of a. Then, using Ludwig’s theorem on symmetric
group algebras of nilpotent groups ([21]), the authors proved in [12] (Theorem 3.1) that
Av:GL(α, β) is inverse closed in B(L2(Rd)). The algebra Av;GL is naturally associated to
the twisted convolution algebra (l1v(Z

2d), ]θ), where

(a]θb)(m,n) =
∑
k,l∈Zd

aklbm−k,n−le
2πiθ(m−k)·l (8)

In this setting, the above result is equivalent to saying (Theorem 2.14 in [12])that for any
a ∈ l1v(Z2d) so that the convolution operator La : l2(Z2d)→ l2(Z2d), x 7→ La(x) = a]θx, is
invertible in B(l2(Z2d)), then its inverse is of the form L−1

a = Lb for some b ∈ l1v(Z2d). The
proof of this result relies heavily on abstract results on group algebras of locally compact
nilpotent groups ([21],[17]). As the authors point out, analyzing spectral properties of
group algebras is not usually an easy business.

Again in the context of time-frequency analysis, Gröchenig in [11] translated a result
by J.Sjöstrand [28] using the modulation space M∞,1

v . The operator algebra

Sv = {T ∈ B(L2(Rd)) | T =

∫
R2d

dλσ(λ)Uλ , ‖T‖Sv := ‖σ‖M∞,1v
:=

∫
Rd

dq supp∈Rd |Vγσ(q, p)|v(q, p)}

(9)
is shown to be inverse closed in B(L2(Rd)).

Another example of an inverse closed algebra is furnished by the Baskakov class of
matrices that have some off-diagonal decay. In [5] Baskakov proves the Banach algebra:

Bv = {A = (Am,n)m,n∈Zd ∈ B(l2(Zd)) | ‖A‖Bv :=
∑
k∈Zd

v(k) sup
m∈Zd

|Am,m−k| <∞} (10)

with v a subexponential weight is inverse closed and also obtains estimates of the entries
of the inverse matrix. The unweighted version of this result had been proved in [8] ([30]).
These results have been obtained also independently by Gröchening and Leinert in [13]
using a Banach algebra technique. In [3] we used Baskakov’s result to establish localization
results for Gabor like frames.

In this paper we extend previously known results to the Banach algebra (4) and its
weighted version (14). Beside the intrinsic interest of a new Wiener type lemma, we are
motivated by two problems in time-frequency analysis. One problem concerns the Heil-
Ramanathan-Topiwala (HRT) conjecture, the other problem relates to the time-frequency
analysis of communication channels.

The HRT conjecture (see [14]) states that finitely many distinct time-frequency shifts
of one L2 function, are linearly independent (over C). This means, for any finite subset
of R2d, Λ ⊂ R2d, and g ∈ L2(Rd),∑

λ∈Λ

cλUλg = 0⇒ cλ = 0,∀λ ∈ Λ (11)
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When Λ is a subset of a lattice, the claim was positively proved by Linnell in [19], however
the general case, as far as we know, is still open. The problem can be recast into a
spectral analysis problem. More specifically the HRT conjecture is equivalent to proving
that for any finite subset Λ ⊂ R2d, and complex numbers (cλ)λ∈Λ, the bounded operator
T =

∑
λ∈Λ cλUλ has no pure point spectrum. Motivated by this problem, one is naturally

led to an algebra of type (4). Our result in this paper (Theorem 3.10) is one step toward
analyzing spectral properties of such operators. Here we prove that any T in A (in
particular this works for finite linear combinations of time-frequency shifts) cannot have
isolated eigenvalues of finite multiplicity. For our setting, this is the best result one can
hope to obtain (see Remark after Theorem 3.10).

In communication theory, a multipath time-varying communication channel is mod-
eled as a linear superposition of time-frequency shifts (see [29]). Often the channel model
contains finitely many time-frequency shifts, or infinitely many but fast-decaying coeffi-
cients, so naturally, the channel transfer operator is in algebra Av. One problem is channel
equalization (or deconvolution) by which one has to invert the channel transfer operator.
Assuming this operator is invertible on the space of finite energy signals, then our result
says the inverse is also a superposition of time-frequency-shifts, with absolutely summable
coefficients. The coefficients decay rate gives the convergence rate of finite approximation
methods. In this context our results (Theorems 3.6, 3.12) give estimates of this decay.
We also obtain necessary and sufficient conditions for operators in A to have bounded
support (Theorem 3.14).

Another contribution of this paper is the explicit construction of a faithful tracial state
on A that yields several consequences. In particular we show that A does not contain any
compact operator, from where we obtain as a corollary the partial answer to the HRT
conjecture. We prove also Paley-Wiener type extensions for this algebra.

Throughout this paper we use the following notations. For a set I, |I| denotes the
cardinal of set I (i.e. the number of points contained in I); for x ∈ Rd, |x| denotes its
max-norm (l∞), whereas ‖x‖ denotes the Euclidian (l2) norm; Br(x) denotes the closed
ball of radius r centered at x with respect to norm | · |, Br(x) = {y ∈ Rd | |x− y| ≤ r};
thus {B1(n) ; n ∈ Zd} forms a covering (but not disjoint) partition of Rd; Er(x) denotes
the Euclidian closed ball of radius r centered at x, Er(x) = {y ∈ Rd | ‖x − y‖ ≤ r}; F
denotes the unitary Fourier transform with the following normalization:

f 7→ Ff(ω) =
1

(2π)d/2

∫
Rd

e−iωxf(x) dx

We will frequently use λ, µ to denote time-frequency points in R2d, e.g. λ = (t, ω) of
components t, ω ∈ Rd. For a weight v we denote by l1v(R

n) (or just l1v when no danger of
confusion) the space of functions c : Rn → C so that ‖c‖l1v :=

∑
x∈Rn v(x)|c(x)| <∞. For

0 < p < ∞ we let lp(Rn) (or merely lp, when no danger of confusion) denote the space
of functions c : Rn → C so that ‖c‖p := (

∑
x∈Rn |c(x)|p)1/p < ∞. We will frequently use

the notation cx = c(x). The support of c is defined by supp(c) = {λ ∈ Rn | cλ 6= 0},
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and for any c in lp with 0 < p < ∞ or l1v it is always a finite or countable subset of Rn.
For p = ∞, l∞ represents the set of bounded functions on Rn, not necessarily of finite
or countable support, and ‖c‖∞ = supx |cx|. For any p ≥ 1, lp is a Banach space with
‖ · ‖p norm. Note lp(Rn) is not separable for any p. In particular l2(Rn) does not have a
countable orthonormal basis. lp(Rn) and l1v(R

n) are the corresponding Lp and L1
v spaces

for Rn endowed with discrete topology.
The organization of this paper is the following. Section 2 introduces weighted algebras

constructions; Section 3 contains our main results. Section 4 contains comments on
different approaches in prior literature, and Section 5 contains proofs of these results.

2 Weighted Time-Frequency Banach algebras

In this paper a weight v is a nonnegative and radially non-decreasing function on Rd so
that v(0) = 1 and v(−x) = v(x). Let w : R+ → R+ be the function w(r) = max‖x‖=rv(x).
We define the following (see also [13]):

(a) The weight v is said submultiplicative if it satisfies

v(x+ y) ≤ v(x)v(y) (12)

(b) The weight v is said to satisfy the GRS (Gelfand-Raikov-Shilov) condition if

lim
n→∞

(w(nr))1/n = 1 , ∀r ≥ 0 (13)

(c) The weight v is called admissible if it is submultiplicative and satisfies the GRS
condition.

Example 2.1 [13]
Typical examples of admissible weights are the polynomial weights, v(x) = (1 + ‖x‖)s

for some s ≥ 0, and the subexponential weights, v(x) = eα‖x‖
β
, for some α ≥ 0 and

0 < β < 1. More generally, the following is also an admissible weight (see [13]), v(x) =
eα‖x‖

β
(1 + ‖x‖)slogt(e+ ‖x‖), where α, s, t ≥ 0, 0 < β < 1.

Note the exponential weight v(x) = eα‖x‖ with α > 0 is not admissible. It is submulti-
plicative, but does not satisfy the GRS condition.

Throughout this paper all the weights are assumed at least submultiplicative. Except
for Lemma 5.2 and the proof of Theorem 3.12, all weights considered in the rest of the
paper are admissible. In Lemma 5.2 we consider the less restrictive submultiplicative
weights to cover the case of exponential weights needed in the proof of Theorem 3.12.

For a weight v, we let Av denote the algebra of time-frequency operators with l1v
summable coefficients,

Av = {T =
∑
λ

cλUλ ; ‖T‖Av :=
∑
λ

v(λ)|cλ| <∞} (14)
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This is a subalgebra of the bounded operators B(L2(Rd)). Furthermore, for every T ∈ Av,
‖T‖B(L2(Rd)) ≤ ‖T‖Av . Thus the C∗ algebra A obtained by closing any one of Av with
respect to the operator norm ‖ · ‖B(L2(Rd)) includes A and hence every Av.

For two Banach algebras A and B, we call A an inverse closed algebra in B, if any
element x ∈ A that is invertible in B, is invertible in A, x−1 ∈ A. Neimark in [22] calls
(A,B) a Wiener pair, whereas Baskakov in [5] calls A a full algebra in B.

3 Main Results

In the following v denotes an admissible weight. In particular v can be the constant
function v = 1 (the unweighted case).

Theorem 3.1 (Spectral Invariance) Assume T =
∑

λ cλUλ ∈ Av. Then the spectral
radii with respect to algebras B(L2(Rd)) and Av are equal to one another,

rB(L2(Rd))(T ) = rAv(T ) (15)

3

Theorem 3.2 (Wiener Lemma for TF Operators) The algebra Av is inverse closed
in B(L2(Rd)). Explicitely this means, if T =

∑
λ∈Λ cλUλ for some c ∈ l1(R2d) with Λ =

supp(c), and T is invertible in B(L2(Rd)), then there is d ∈ l1(R2d) with Σ = supp(d)
so that T−1 =

∑
σ∈Σ dσUσ. 3

Immediate corollaries of this result are the following:

Corollary 3.3 For any T ∈ Av its spectrum with respect to the algebra Av coincides to
the spectrum with respect to the algebra B(L2(Rd)). Explicitely this means

spB(L2(Rd))(T ) = spAv(T ) (16)

3

Corollary 3.4 Assume T =
∑

λ∈R2d cλUλ with
∑

λ |cλ| < ∞ is invertible in B(L2(Rd)).
Then T is invertible in all B(Lp(Rd)), with 0 < p ≤ ∞. 3

Corollary 3.5 Let T =
∑

t∈RdmtSt be a bounded invertible operator on L2(Rd) so that∑
t ‖mt‖AP <∞. Then T−1 =

∑
t∈Rd ntSt with nt ∈ AP so that

∑
t ‖nt‖AP <∞. 3

The following theorem gives an explicit estimate of the Av norm of the inverse when
the operator has finite support.
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Theorem 3.6 (Norm of the Inverse) Assume T =
∑

λ∈Λ cλUλ with |Λ| = N < ∞
and R0 = maxλ∈Λ ‖λ‖. Assume T is invertible in B(L2(Rd)), and hence in Av as well
(by Theorem 3.2). Denote A = ‖T−1‖2

B(L2(Rd))
, B = ‖T‖2

B(L2(Rd))
, and ρ = max(1, 2R0),

and assume a polynomial weight w(x) = C(1 + x)m for some C > 0 and m ∈ N. Then

‖T−1‖Av ≤
Cρm‖T‖Av

A
(m+N)!

(
A+B

2A

)m+N

(17)

3

Consider now G = {gm,n;α,β := Uβn,2παmg | m,n ∈ Zd} a Gabor frame for L2(Rd), with
α, β > 0, αβ ≤ 1, and a dual Gabor frame (not necessarily the canonical dual frame)
G̃ = {g̃m,n;α,β := Uβn,2παmg̃ | m,n ∈ Zd}. For details on Gabor frame theory we refer the
reader to e.g. [9]. The following theorem gives an explicit construction of the faithful
tracial state:

γ : A → C , γ(
∑
λ

cλUλ) = c0 (18)

This trace extends to A, the completion of A with respect to the operator norm, which
is a C∗ algebra.

Theorem 3.7 (Trace on A) For any T ∈ A,

γ(T ) =
1

(αβ)d
lim

M,N→∞

1

(2M + 1)d(2N + 1)d

∑
|m|≤M

∑
|n|≤N

〈Tgm,n;α,β, g̃m,n;α,β〉 (19)

is the faithful tracial state (18) on A, independent of the choice of the Gabor frame G. 3

Next we have

Corollary 3.8 For any operator T =
∑

λ cλUλ ∈ A

|cλ| ≤ ‖c‖∞ ≤ ‖c‖2 ≤ ‖T‖B(L2(Rd)) ≤ ‖c‖1 (20)

and

cλ = γ(U∗λT ) = lim
M,N→∞

1

(αβ)d
1

(2M + 1)d(2N + 1)d

∑
|m|≤M

∑
|n|≤N

〈U∗λTgm,n;α,β, g̃m,n;α,β〉 (21)

3

As a corollary of this result we obtain that A (and hence A as well) cannot contain
compact operators:

Corollary 3.9 Assume T ∈ A is a compact operator. Then T = 0. 3
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Since for any finite set Λ ∈ R2d, and complex scalars (cλ), the operator T =
∑

λ∈Λ cλUλ
is inA, we obtain the following theorem that gives a partial answer to the HRT conjecture:

Theorem 3.10 Any operator T ∈ A (in particular, any finite linear combination of time-
frequency shifts) cannot have an isolated eigenvalue of finite multiplicity. Hence the pure
point spectrum, if it is nonempty, can only contain eigenvalues of infinite multiplicity, or
eigenvalues that belong to the continuous part of the spectrum as well. 3

Remark 3.11 This theorem is optimal with respect to algebra A. This means that there
are operators in A that have isolated eigenvalues but of infinite multiplicity. Indeed, con-
sider the Gaussian window γ(x) = exp(−x2/2) and the Riesz basic sequence it generates
for some parameters α, β > 1, Γ = {γm,n;α,β ; m,n ∈ Zd}. Let γ̃ be the canonical dual
window. Note that both γ, γ̃ ∈ M1 (by [12]). Now consider the orthogonal projection P
onto the span of Γ. It is immediate to prove that P commutes with all time-frequency
shifts Unβ,2πmα. Hence P belongs to the commutant {Ube,0, U0,2πα, I}′ which is the von
Neumann algebra generated by Un/α,2πm/β. The decomposition of P with respect to these
unitary generators is given by the Wexler-Raz formula:

P =
∑

m,n∈Zd
cn,mUn

α
, 2πm
β

with cn,m = 1
(αβ)d
〈γn,m; 1

α
, 2π
β
, γ̃〉. The coefficients are absolutely summable which implies

P ∈ A. But clearly the spectrum of P consists of only two elements, 0 and 1, each of
infinite multiplicity since otherwise this would contradict the Theorem 3.10. The multi-
plicity of eigenvalue 0 represents the deficit of Γ, defined as the smallest cardinal of a set
of vectors so that its union with Γ becomes a Riesz basis for L2(Rd). This is the dual
problem to the excess problem we analyzed in [1, 2, 3, 4]. Thus the deficit of any Gabor
Riesz basic sequence with generator in M1 can only be infinite (zero is ruled out by the
Balian-Law no-go result).

For finite support operators as above, we can estimate the decay rate of the coefficients
of the inverse operator. In general such operators are in Av for any subexponential weight
v. Hence the inverse operator would have coefficients that are summable with respect to
the same weight. Even more can be said:

Theorem 3.12 Let T =
∑

λ∈Λ cλUλ be an invertible operator with Λ ⊂ R2d a finite set.
Then there is δ > 0 so that if T−1 =

∑
µ∈R2d dµUµ then∑

µ∈R2d

eδ|µ||dµ| <∞ (22)

3
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This result generalizes the classic statement (see e.g. [31]) that the reciprocal of a trigono-
metric polynomial that does not vanish on the unit circle has exponentially decaying
Fourier coefficients. Our result is stronger than just simply saying the coefficients of the
inverse operator should decay exponentially fast. It also controls the “tail” of the sum-
mation. To make this point more precise, we notice that (22) is equivalent to a Wiener
amalgam type norm: ∑

n∈Z2d

eδ|n|
∑

µ∈B1(n)

|dµ| <∞ (23)

where B1(n) is the ball of radius 1 centered at n, B1(n) = {λ ∈ R2d | |n−λ| ≤ 1}. Hence
there is a constant C > 0 so that for all R > 0,∑

µ∈R2d,|µ|≥R

|dµ| < Ce−δR (24)

Another equivalent statement to Theorem 3.12 is given by the Corollary 3.13 below.
First we need to introduce a Banach space. Let us denote by L2,∞(Rd × I) the mixed
norm Banach space

L2,∞(Rd × I) = {f : Rd × I → C ; ‖f‖2
2,∞ := sup

y∈I

∫
Rd

|f(x, y)|2dx <∞} (25)

where I ⊂ Rd is a compact neighborhood of the origin. Then the unitary Uλ extends
from L2(Rd) to L2,∞(Rd × I) simply by:

Uλf(x, y) = ei〈ω,x+iy〉f(x− t, y) , λ = (t, ω), (x, y) ∈ Rd × I (26)

An operator T =
∑

λ cλUλ extends to T =
∑

λ cλUλ under some conditions. Clearly all
finite or compactly supported operators of A can be extended to L2,∞(Rd× I). Theorem
3.14 gives necessary and sufficient conditions for such an extension to exist.

Corollary 3.13 Let T =
∑

λ∈Λ cλUλ be a finitely supported invertible operator in A.
Then for some compact neighborhood I of the origin whose size depends on the operator
T , the inverse T−1 =

∑
µ dµUµ extends to L2,∞(Rd × I) to the inverse of the extension,

that is to:
T−1 =

∑
µ

dµUµ (27)

3

An alternative statement is that extension and inversion operations commute for some
compact neighborhood of the origin.
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Theorem 3.14 1. Assume T =
∑

λ∈Λ cλUλ ∈ A so that Λ ⊂ Rd × EΩ(0) for some
Ω > 0, where EΩ(0) = {ω ∈ Rd | ‖ω‖ ≤ Ω}. Then for any ρ > 0, T extends to
Xρ = L2,∞(Rd × Eρ(0)) with operator norm bounded by:

‖T‖B(Xρ) ≤ CeρΩ (28)

for C = ‖T‖A.

2. Conversely, assume T =
∑

λ∈Λ cλUλ ∈ A can be extended to Xρ for all ρ > 0, with
a norm bounded as in (28), for some C > 0 and Ω > 0 independent of ρ. Then
supp(T ) ⊂ Rd × EΩ(0).

3. Assume T =
∑

λ∈Λ cλUλ ∈ A so that Λ ⊂ ED(0) × Rd for some D > 0. Then
for any ρ > 0, the operator S = F∗TF , where F denotes the Fourier transform,
extends to Xρ with operator norm bounded by

‖S‖B(Xρ) ≤ CeρD (29)

for C = ‖T‖A.

4. Conversely, assume the Fourier conjugate F∗TF of T =
∑

λ∈Λ cλUλ ∈ A can be ex-
tended to Xρ for all ρ > 0 with a norm bounded as in (29) with C and D independent
of ρ. Then supp(T ) ⊂ ED(0)×Rd.

3

4 Connexions to Prior Literature

In this section we discuss the two ingredients developed in this paper: Wiener lemma
type results, and the faithful tracial state in Gabor analysis. For each of these results we
discuss prior results and approaches presented in literature, strengths and shortcomings
of each method. For precise definitions and more details of the results we refer the reader
to the corresponding paper.

4.1 Discussion about Wiener Lemma and Alternate Proofs

The closest paper to our analysis is [12] by Gröchenig and Leinert. The authors proved
the analogous statement to Theorem 3.2 but only for the lattice case, that is the algebra of
time-frequency shifts from a lattice. As an off-shot of this approach, the authors obtained
a very nice localization result regarding dual Gabor frame generators. More specifically,
if {gm,n;α,β ; m,n ∈ Zd} is a Gabor frame for L2(Rd) with g ∈M1

v , the modulation space
associated to an admissible weight v, then the canonical dual frame {g̃m,n;α,β ; m,n ∈ Zd}
has the generator g̃ ∈ M1

v . One may ask whether the methods used in that paper hold
in our case. The answer is affirmative. Indeed, the main tool used in [12] is the fact
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that the Banach algebra l1v(Z
2d), with the twisted convolution ], is symmetric which in

turn is a consequence of Hulanicki’s and Ludwig’s results on symmetric group algebras
associated to nilpotent groups. The very same result applies to our case where the discrete
countable group Z2d is simply replaced by R2d with discrete topology. Then, as mentioned
in introduction, Theorems 3.2 and 3.1 become consequences of Hulanicki’s theorem from
e.g. [16]. However, by invoking a general abstract result one does not obtain the norm
estimates of Theorem 3.7 nor the localization results of Theorems 3.12 and 3.14. We
preferred to present an explicit and self-contained proof of Theorem 3.2 for two reasons:
(i) for the benefit of reader unfamiliar with the symmetry property of nilpotent group
algebras; and (ii) to obtain explicit estimates of the inverse operator coefficients.

We mentioned earlier an important consequence contained in [12], namely the local-
ization result of the canonical dual Gabor frame generator. One may ask if there is an
analogous consequence to our more general case. The most natural guess would be to
analyze the canonical dual of irregular Gabor frames. Unfortunately, unlike the regular
(i.e. lattice) case, the frame operator may not necessarily belong to Av and hence no
conclusion can be drawn from our analysis. Fortunately one can use another approach
to recover the results of [12] and prove the localization result in the irregular case. This
alternative approach is used in [10, 7], and independently in [3, 4], together with the
Baskakov’s result mentioned earlier in the introduction, or other similar variations (e.g.
the Sjöstrand’s lemma in [28]). Indeed, the frame operator of an irregular Gabor frame
with generator in M1 has a matrix representation with respect to a “nice” Gabor frame
that is dominated by a Toeplitz matrix with l1 generating sequence. In [3] such frames are
called l1 self-localized frames. The associated matrix of such frames admits a pseudoin-
verse, because of frame condition. Using Baskakov Theorem and holomorphic functional
calculus one obtains that the pseudoinverse has the same off-diagonal decaying property
which proves the localization result for the canonical dual frame. In the regular case, the
inverse of an invertible operator that is a linear combination of time-frequency shifts from
a lattice is also a linear combination of time-frequency shifts on the same lattice. (Here
we use “linear combination” to denote the generators of a C∗ algebra, hence convergence
in operator norm). Thus distinct time-frequency labels associated to the inverse opera-
tor are always well separated. This fact combined with Baskakov’s result applied to the
pseudoinverse matrix gives an alternative proof to the case considered in [12] (see also
[13]).

The irregular case is fundamentally different from the lattice case. It is true that an
operator in A has support always contained into a countable generated discrete group of
the time-frequency plane. However the main obstruction in the irregular case is the fact
that the time-frequency labels of the inverse of an operator T ∈ A are not necessarily
well-separated, even when T has finite support. Indeed, if T =

∑
λΛ cλUλ with |Λ| <∞ is

invertible in B(L2(Rd)), then T−1 =
∑

µ dµUλ with convergence in operator norm in A.

However, in general, supp(T−1) has accumulation points in Rd. This fact makes difficult
the application of Baskakov’s Theorem to irregular frames. To better understand this
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obstruction, we remark here only that the conclusion that can be drawn along this line
of reasoning is the following statement. If T =

∑
λ cλUλ ∈ A is invertible in B(L2(Rd))

then its inverse T−1 =
∑

µ dµUµ satisfies∑
k∈Z2d

sup
µ∈B1(k)

|dµ| <∞ (30)

Clearly this statement is weaker than Theorem 3.2 that claims
∑

µ |dµ| <∞.

4.2 Faithful Tracial States in Gabor Analysis

In [6] Daubechies, Landau, and Landau present an explicit formula for the faithful tracial
state on the W ∗ algebra Wa,b generated by {M2πmaTnb ; m,n ∈ Z}. They showed that
Wa,b is a II1 factor when ab 6∈ Q (result also known from the rotation algebra theory,
see e.g. [24]), that has a unique faithful tracial state. In general, regardless of rationality
of ab, a faithful tracial state is defined as the coefficient c0,0 of its strongly convergent
uniquely defined decomposition T =

∑
m,n cm,nUnb,2πma. They showed that this number

(c0,0) is computable using the formula

c0,0 =
1

ab

J∑
k=0

〈T1Ik , 1Ik〉 (31)

where J is the largest integer smaller than or equal to ab, and the J + 1 intervals I0, I1,
... ,IJ−1, IJ are given by [0, 1

a
], [ 1

a
, 2
a
], ..., [J−1

a
, J
a
],[J

a
, b].

In this paper we extend this tracial state from the algebra generated by time-frequency
shifts on a lattice to the algebra generated by all time-frequency shifts. Note however
the following limitation of our method. In [6] the faithful tracial state applies to a W ∗

algebra, whereas our Theorem 3.7 applies only to a C∗ algebra. The tracial state γ of (18)
cannot be extended to the W ∗ algebra generated by A since this W ∗ algebra is the entire
algebra B(L2(Rd)) (which does not admit a faithful tracial state). Consider now the
series of C∗ algebras (Ca,b)a,b>0 each generated by respectively {Unb,2πma ; m,n ∈ Z} (we
restrict ourselves here to the one-dimensional case for convenience of comparison). For
any T ∈ Ca,b, for some a, b > 0, its trace γ(T ) can be computed either by (31), or by (19).
Our formula (19) has the advantage of being independent of lattice parameters (a, b). In
particular this shows the tracial states defined by (31) are compatible on operators that
belong simultaneously to two different W ∗ algebras (for instance T ∈ Ca,b ⊂ C2a,b∩Ca,2b).

We end this section with a comment on Theorem 3.10. In this paper we solve a
restricted case of the HRT conjecture, namely we rule out the existence of isolated eigen-
values of finite multiplicity for all finite linear combinations of time-frequency shifts. In
fact we obtain this conclusion for any operator of A, hence also for infinite linear com-
binations of time-frequency shifts with coefficients in l1. The other case that was ruled
out is the lattice case, that is when the finitely many time-frequency shifts are from a
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lattice. This was beautifully proved by Linnel in [19]. One may ask whether the same
arguments hold in our more general case. There is a difficulty in trying to do so, namely
γ is a faithful tracial state on a C∗ algebra (in this paper) unlike the W ∗ algebra Wa,b

considered in [19]. This difference prevents us from having a similar proof in our setting.
We currently study ways to bypass this difficulty.

5 Proof of Results

The order of proofs is the following. First we prove the spectral invariance Theorem 3.1,
from where we derive Theorem 3.2. In the process of proving Theorem 3.1 we obtain the
norm estimate (35) used in the proof of Theorem 3.6. The corollaries 3.3, 3.4 and 3.5
follow directly from 3.2.

In Theorem 3.7 we construct the faithful tracial state on A, and therefore A. This
will be proved later in this section. From this result we will derive Corollaries 3.8, 3.9,
and Theorem 3.10. Theorems 3.12 and 3.14 will follow after an extension to the Banach
space L2,∞(Rd × I).

5.1 Proof of Theorems 3.1, 3.2, 3.6 and Corollaries 3.3,3.4,3.5

Theorem 3.1 is obtained in two steps. First step involves finite linear combinations of
time-frequency shifts. In the second step the spectral result is extended to the entire
algebra A.

Consider T =
∑

λ∈Λ cλUλ with |Λ| < ∞ a finite linear combination of time-frequency
shifts. Note:

T n =
∑
σ∈Λ(n)

dσUσ

where:

Λ(n) = Λ + Λ + · · ·+ Λ = {λ1 + · · ·+ λn | λ1, . . . , λn ∈ Λ} (32)

dσ =
∑

λ1, . . . , λn ∈ Λ
λ1 + · · ·+ λn = σ

cλ1 · · · cλne−it1ω2e−it2ω3 · · · e−itn−1ωn (33)

where each λk = (tk, ωk). Then by Cauchy-Schwarz,

‖T n‖Av =
∑
σ∈Λ(n)

|dσ|v(σ) ≤ |Λ(n)|1/2 sup
σ∈Λ(n)

|v(σ)|‖d‖2 (34)

We estimate next the three factors of the right-hand side and prove the following
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Lemma 5.1 Assume T =
∑

λ∈Λ cλUλ is an operator in A with |Λ| <∞ and Λ ⊂ ER0(0).
Then for any submultiplicative weight v, that is v(x+ y) ≤ v(x)v(y) for all x, y,

‖T n‖Av ≤ (n+ 1)|Λ|/2w(nR0) · ‖T n‖B(L2(Rd)) (35)

where w(a) = sup‖x‖=av(x) 3.
Proof of Lemma 5.1
An upper bound for the cardinal of set Λ(n) in (34) is obtained as follows. Notice that

λi + λj = λj + λi therefore any permutation of terms in λ1 + · · ·+ λn would produce the
same point σ. Hence:

|Λ(n)| ≤ |{(k1, k2, . . . , k|Λ| | k1 + k2 + . . .+ k|Λ| = n , k1, k2, . . . , k|Λ| ≥ 0}| (36)

=
(n+ |Λ|) · · · (n+ 1)

|Λ|!
≤ (n+ 1)|Λ|

For the second factor in (34) we need to estimate the radius Rn of a ball ER(0) in R2d

that includes all Λ(n). If R0 = maxλ∈Λ‖λ‖, then for Rn = nR0 we have Λ(n) ⊂ ERn(0).
Since the weight v is radially non-decreasing,

max
σ∈Λ(n)

v(σ) ≤ w(nR0) (37)

The third factor in (34) is a bit more complicated. We need to use the following lemma,
which is of intrinsic interest:

Lemma 5.2 For any finite set of time-frequency points Σ = {σ1, . . . , σN} there is a
function g ∈ L2(Rd) so that {Uσkg ; 1 ≤ k ≤ N} is an orthonormal set. 3

Assume this lemma is proved. Then we apply Lemma 5.2 to the set Λ(n) = Λ + · · · + Λ
and we obtain, on the one hand

‖T ng‖2 = ‖
∑
σ∈Λ(n)

dσUσg‖2 =
∑
σ∈Λ(n)

|dσ|2 = ‖d‖2
2

and on the other hand
‖T ng‖2 ≤ ‖T n‖2‖g‖2 = ‖T n‖2

Thus we get:
‖d‖2 ≤ ‖T n‖ (38)

Putting together (36,37,38) into (34) we obtain:

‖T n‖Av ≤ (n+ 1)|Λ|/2w(nR0)‖T n‖B(L2(Rd)) (39)

which proves Lemma 5.1. Q.E.D.
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Remark 5.3 Inequality (38) follows also independently from (20) of Corollary 3.8.

Taking the nth root and passing to the limit n→∞ we obtain:

r(T )Av ≤ r(T )B(L2(Rd)) (40)

Since the inclusion Av ⊂ B(L2(Rd)) implies the inverse inclusion of the spectra
spB(L2(Rd))(T ) ⊂ spAv(T ), one obtains rB(L2(Rd))(T ) ≤ rAv(T ). This concludes the proof
of the spectral radii equation (15) for finite linear combinations of time-frequency shifts.
Before going to the second step, we prove Lemma 5.2.

Proof of Lemma 5.2
The statement is equivalent to finding a function g ∈ L2(Rd) so that 〈Uσg, g〉 = δσ,0,

for all σ ∈ ∆ := (Σ−Σ). Let T be the projection of ∆ on the first factor Rd, and Ω be the
projection onto the second factor Rd. Thus ∆ ⊂ T ×Ω. Notice both T and Ω are finite sets
of points of Rd, symmetric about, and containing the origin. Let Ω \ {0} = {ω1, . . . , ωM}
be an enumeration of Ω, and let τmin, τmax > 0 be the radii of two balls around the origin
in Rd so that Eτmin(0) ∩ T = {0} and T ⊂ Eτmax(0). We set g as follows:

g =
√
h1 ∗ h2 ∗ · · · ∗ hM/‖

√
h1 ∗ h2 ∗ · · · ∗ hM‖ (41)

where ∗ denotes the usual convolution, and h1, h2, . . . , hM are constructed as follows. First
we construct inductively the sequence t1, t2, . . . , tM ∈ Rd so that:

1. 〈t1, ω1〉 = (2n1 + 1)π for some integer n1 ∈ Z and ‖t1‖ > τmax

2. Given t1, t2, . . . , tk choose tk+1 so that: (i) 〈tk+1, ωk+1〉 = (2nk+1 + 1)π for some
integer nk+1 ∈ Z, and (ii) ‖tk+1‖ > ‖t1‖+ · · ·+ ‖tk‖+ 2Mτmax

With this choice for {t1, . . . , tM}, we set:

hk = 1E + 1tk+E (42)

where E = Eτmin/M(0) is the Euclidian ball of radius τmin centered at the origin, and 1E,
1tk+E, are the characteristic functions of E, respectively tk + E. Note that g is a sum of
2M “bump” functions each supported inside balls of radius τmin and each at a distance of
at least τmax from one another. Thus all translates with shifts from T \ {0} are disjoint.
Hence 〈Uµg, g〉 = 0 for all µ = (t, ω) ∈ ∆ with t ∈ T \ {0}. It remains to check only
that 〈Mωkg, g〉 = 0. Using Fourier transform, this is equivalent to F(|g|2)(ωk) = 0. But
the choice of tk guarantees that F(hk)(ωk) = 0 which concludes the proof of Lemma 5.2.
Q.E.D.

Now we are ready to go to step 2 of the proof of Theorem 3.1. Consider now T =∑
λ cλUλ ∈ Av. Fix ε > 0. Let Λ be a finite set so that

∑
λ∈R2d\Λ |cλ|v(λ) < ε. Set

15



T0 =
∑

λ∈Λ cλUλ and R = T − T0. Thus ‖R‖ ≤ ‖R‖Av < ε. For a more convenient
notation denote by s = (sσ)σ and r = (rρ)ρ the coefficients of T0, respectively R,

sσ =

{
cσ if σ ∈ Λ
0 otherwise

rρ =

{
0 if ρ ∈ Λ
cρ otherwise

(43)

Now expand T n = (T0 +R)n as follows

T n =
n∑

m=0

∑
k,j

Rk1T j10 R
k2T j20 · · ·RklT jl0 =

n∑
m=0

∑
k,j

∑
λ∈R2d

(
rk1]sj1] · · · ]rkL]sjL

)
λ
Uλ(44)

where k = (k1, k2, . . . , kL), j = (j1, j2, . . . , jL) are vectors of nonnegative integers so that
k1 + · · · kL = n − m and j1 + · · · + jL = m, and rk = r] · · · ]r is the k-fold twisted
convolution. Then the λ-coefficient expands into

cλ =
∑

ρ1,··· ,ρL∈R2d

∑
σ1,··· ,σL∈R2d

rk1ρ1e
−i〈a1,d1−b1〉sj1σ1−ρ1e

−i〈c1,b2−d1〉rk2ρ2−σ1
e−i〈a2,d2−b2〉sj2σ2−ρ2 · · ·

·e−i〈cL−1,bL−dL−1〉rkLρL−σL−1
e−i〈aL,dL−bL〉sjLσL−ρLδσL,λ

where ρl = (al, bl) and σl = (cl, dl) are the components of the 2L phase-space points
constrained by σL = λ as expressed by the last Kronecker term.

The next step is to change the summation variables and rearrange the terms as sug-
gested by Hulanicki in [15]. Let ρ̃p = ρp − σp−1 = (ãp, b̃p), 1 ≤ p ≤ L, with convention
σ0 = (0, 0). Also denote by Vp the unitary

(Vps)λ=(t,ω) = e−i〈ãp,ω〉sλ−ρ̃p .

Then cλ turns into:

cλ =
∑

ρ̃1,··· ,ρ̃L∈R2d

eia1b1rk1ρ̃1r
k2
ρ̃2
· · · rkLρ̃L

∑
σ1,··· ,σL

(V1s
j1)σ1e

−i〈c1,d2−d1〉(V2s
j2)σ2−σ1e

−i〈c2,d3−d2〉

· . . . · e−i〈cL−1,dL−dL−1〉(VLs
jL)σL−σL−1

δσL,λ

=
∑

ρ̃1,··· ,ρ̃L∈R2d

eia1b1rk1ρ̃1r
k2
ρ̃2
· · · rkLρ̃L ((V1s

j1)](V2s
j2)] · · · ](VLsjL))λ

and thus
|cλ| ≤

∑
ρ̃1,...,ρ̃L

|rk1ρ̃1 | · . . . · |r
kL
ρ̃L
| · |(V1s

j1]V2s
j2] · · · ]VLsjL)λ| (45)

Since
w(λ) ≤ w(ρ̃1) · . . . w(ρ̃L) · w(λ− ρ̃1 − · · · − ρ̃L)
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and

supp(V1s
j1]V2s

j2] · · · ]VLsjL) ⊂ (ρ̃1 + · · ·+ ρ̃L) + Λ(m) , Λ(m) := Λ + Λ + · · ·+ Λ︸ ︷︷ ︸
m

we obtain

‖T n‖Av ≤
n∑

m=0

(
n
m

)
εn−m max

σ∈Λ(m)
v(σ) sup

ρ̃1,...,ρ̃L

∑
λ

∣∣((V1s
j1)] · · · ](VLsjL))λ

∣∣ (46)

Now we will estimate the sum over λ above similar to the estimation in (34). The cardinal
of Λ(m) has been shown in Lemma 5.2 to be bounded by (m+1)|Λ| and hence by (n+1)|Λ|.
Note also that Λ(m) ⊂ EmR0(0) where R0 is a radius so that Λ ⊂ ER0(0). Thus we get:

‖T n‖Av ≤ (n+1)|Λ|/2w(nR0)
n∑

m=0

(
n
m

)
εn−m sup

a1,...,aL,b1,...,bL

(∑
λ

|((V1s
j1)] · · · ](VLsjL))λ|2

)1/2

(47)
By Lemma 5.1 the l2 norm of the sequence s = (V1s

j1] · · · ]VLsjL) is bounded by the
operator norm obtained by linear combinations of time-frequency shifts with coefficients
from s:

‖s‖2 ≤ ‖
∑
λ

sλUλ‖B(L2(Rd))

Note the operator associated to s is (up to a constant phase factor):

Uρ̃1T
j1
0 Uρ̃2T

j2
0 · . . . · Uρ̃LT

jL
0

Thus we get:
‖s‖2 ≤ ‖T0‖j1+···+jL

B(L2(Rd))
= ‖T0‖mB(L2(Rd)) (48)

which turns (47) into:

‖T n‖Av ≤ (n+ 1)|Λ|(ε+ ‖T0‖B(L2(Rd)))
n (49)

Now taking the nth root and passing to the limit n→∞ we obtain:

rAv(T ) ≤ ε+ ‖T0‖B(L2(Rd))

Since ε > 0 was arbitrary, and ‖T0‖ ≤ ‖T‖ we obtain:

rAv(T ) ≤ ‖T‖B(L2(Rd)) (50)

Since rAv(T
n) = (rAv(T ))n we obtain:

rAv(T ) ≤ ‖T n‖1/n

B(L2(Rd))
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and passing to the limit n→∞ we obtain

rAv(T ) ≤ rB(L2(Rd))(T ) (51)

The converse inequality is immediate from Av ⊂ B(L2(Rd)). This ends the proof of (15)
and hence of Theorem 3.1. 3

Now Theorem 3.2 and subsequent Corollaries are immediate. Theorem 3.2 and Corol-
lary 3.3 are consequences of Hulanicki’s Lemma (Proposition 2.5 in [17]; see also Propo-
sition 9 in [12]).

During the proof of Theorem 3.1 we obtained the estimate (35). We will use this in
proving Theorem 3.6.

Proof of Theorem 3.6
Assume T is invertible in B(L2(Rd)). Then for A = ‖T−1‖−2 and B = ‖T‖2,

0 < A ≤ T ∗T ≤ B <∞

Note ‖1− 2
A+B
‖ = B−A

B+A
< 1. Thus

T−1 = (T ∗T )−1T ∗ =
2

A+B

∑
n≥0

(1− 2

A+B
T ∗T )nT ∗

which converges in operator norm in B(L2(Rd)). The estimate (35) of Lemma 5.1 turns
into:

‖1− 2

A+B
T ∗T‖Av ≤ (n+ 1)|Λ

′|/2w(nR′0)‖1− 2

A+B
T ∗T‖n

where Λ′ is the label set of 1− 2
A+B

T ∗T , and R′0 is so that Λ′ ⊂ ER′0(0). Since Λ′ ⊂ Λ−Λ
we have |Λ′| ≤ 2|Λ| = 2N and R′0 ≤ 2R0, where R0 = maxλ∈Λ ‖λ‖ is so that Λ ⊂ ER0(0).
Thus we get

‖T−1‖Av ≤
2

A+B

∑
n≥0

(n+ 1)N w(2nR0)

(
B − A
B + A

)n
‖T‖Av

For w(x) = C(1 + x)m and ρ = max(1, 2R0), w(2nR0) ≤ ρm(1 + n)m and for θ0 =
(B − A)/(B + A) we obtain

‖T−1‖Av ≤
2Cρm‖T‖Av
A+B

∑
n≥0

(1 + n)m+Nθn ≤ 2Cρm‖T‖Av
A+B

[
dm+N

dθm+N

∑
n≥0

θn]|θ=θ0

Since θ0 < 1, by direct summation and then differentiation we obtain (17) which ends the
proof of this Theorem. Q.E.D.
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5.2 Proof of Theorems 3.7, 3.10 and Corollaries 3.8 and 3.9

For any bounded operator T ∈ B(L2(Rd)) denote by aM,N(T ) the following expression

aM,N(T ) =
1

(αβ)d(2M + 1)d(2N + 1)d

∑
|m|≤M

∑
|n|≤N

〈Tgm,n;α,β, g̃m,n;α,β〉 (52)

Clearly |aM,N(T )| ≤ C‖T‖B(L2(Rd)), with C independent of T,M,N .
Trace on A
First we need to show that for every T ∈ A the limit limM,N→∞ aM,N exists and equals

c0 = γ(T ), the 0-coefficient of T . We prove this statement in two steps. First we consider
the unitary generators of A, and then we extend by continuity to the entire A.

Lemma 5.4 Let Uλ denote the time-frequency shift with parameter λ = (t, ω). Then

lim
M,N→∞

aM,N(Uλ) =

{
1 if λ = 0
0 if λ 6= 0

(53)

3

Proof
We explicitely compute aM,N(Uλ)

aM,N(Uλ) =
1

(αβ)2(2M + 1)d(2N + 1)d

∑
|m|≤M

∑
|n|≤N

e2πimαteinβω
∫
eiωxg(x−t)g̃(x)dx (54)

There are now two cases:
Case 1. (t, ω) = (K

α
, 2πJ

β
) for some K, J ∈ Zd. Then e2πimαt = e2πinβ = 1 and

summations over m and n cancel the factor (2M + 1)d(2N + 1)d

aM,N(Uλ) =

∫
e

2πi
β
Jxg(x−Kα)g̃(x) dx

Recall G is a Gabor frame with dual frame G̃. By duality principle ([6],[18],[27]) G ′ =
{gm,n; 1

β
, 1
α

; m,n ∈ Zd} and G̃ ′ = { 1
(αβ)d

g̃m,n; 1
β
, 1
α

; m,n ∈ Zd} are Riesz basic sequences

biorthonormal to one another. Thus

〈gJ,K; 1
β
, 1
α
, g̃〉 = (αβ)dδJ,0δK,0

and combined with (54) proves (53) in this case.
Case 2. (tα, ωβ

2π
) 6∈ Z2d. Then for tα 6∈ Zd a direct computation shows

lim
M→∞

1

(2M + 1)d

∑
|m|≤M

e2πimαt = 0
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whereas for ωβ
2π
6∈ Zd

lim
N→∞

1

(2N + 1)d

∑
|n|≤N

einβω = 0

This ends the proof of Lemma 5.4. Q.E.D.
By linearity we extend the result of this lemma to finite linear combinations of unitary

operators Uλ:

lim
M,N→∞

aM,N(
L∑
k=1

cλkUλk) =

{
c0 if 0 ∈ {λ1, . . . , λL}
0 otherwise

Next the limit extends to the entire A by Lebesgue’s dominated convergence theorem:

lim
M,N→∞

aM,N(
∑
λ

cλUλ) =
∑
λ

cλ lim
M,N→∞

aM,N(Uλ) = c0 = γ(
∑
λ

cλUλ) (55)

Consider T =
∑

λ cλUλ ∈ A and S =
∑

µ dµUµ ∈ A. Then TS =
∑

ρ(c]d)ρUρ ∈ A and
ST =

∑
ρ(d]c)ρUρ ∈ A. But now

γ(TS) = (c]d)0 =
∑
λ

cλd−λ = (d]c)0 = γ(ST ) (56)

This shows γ is a tracial state on A. Finally, for T =
∑

λ cλUλ ∈ A. Then

γ(T ∗T ) =
∑
λ

|cλ|2 ≥ 0 , γ(T ∗T ) = 0 iff T = 0 (57)

Thus γ is a faithful state.
Extension to A
When we set g = g̃ in (19), for any T ∈ A we obtain:

|γ(T )| ≤ ‖T‖B(L2(Rd))

Then we can extend γ to the completion of A with respect to the operator norm. The
completion of A is denoted A and is a C∗ algebra. On this algebra, γ remains a faithful
tracial state. This ends the proof of Theorem 3.7. Q.E.D.

Corollaries of Theorem 3.7
The proof of Corollary 3.8 is immediate. In particular equation (20) follows as in (57),

whereas (21) is a consequence of Lemma 5.4.
For proving the Corollary 3.9 note first that if T is a finite rank operator then

trace(T ∗T ) <∞. But then

trace(T ∗T ) =
∑

m,n∈Zd
〈T ∗Tgm,n;α,β, g̃m,n;α,β〉 <∞
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and thus limM,N→∞ aM,N(T ∗T ) = 0. By Corollary 3.8 this implies T = 0. Now consider
T a compact operator in A. Then T ∗T ∈ A is a non-negative compact operator. Let
s > 0 be an eigenvalue of T ∗T and let Ps denote the projection onto its eigenspace. On
the one hand Ps is finite rank, since T ∗T is compact, on the other hand, by holomorphic
functional calculus (see [25]), Ps belongs to C∗ algebra A. Then, as shown before, Ps has
to vanish, which proves T = 0. Q.E.D.

Proof of Theorem 3.10
Theorem 3.10 is a consequence of the holomorphic functional calculus. Assume T =∑
λ cλUλ has a finite isolated eigenvalue say µ0. Since it is isolated, by holomorphic

functional calculus (see [25]) the orthogonal projection onto the eigenspace is given by

Pµ0 =
1

2πi

∫
Γ

(zI − T )−1dz (58)

where Γ is a circle in the complex plan centered at µ0 so that it separates µ0 from the
rest of the spectrum of T . Thus Pµ0 ∈ A. Since µ0 has finite multiplicity it follows that
Pµ0 has finite rank but then by Corollary 3.9, Pµ0 = 0 which ends the proof of Theorem
3.10. Q.E.D.

5.3 Proof of Theorems 3.12 and 3.14

Theorems 3.12 and 3.14 characterize finite and half-compactly supported operators in A.
The proof of Theorem 3.12 is based on a spectral radius computation done in Lemma 5.1.
In turn, Theorem 3.12 allows the operator extension to the Banach space L2,∞ introduced
in Section 3. Once this extension is established, Theorem 3.14 follows easily.

For a ρ > 0 we set f(λ) = eρ‖λ‖, λ ∈ Rd. For convenience we denote Bρ = Af ,
the Banach algebra of bounded operators in A whose coefficients decay exponentially fast
with rate ρ. Note the spectral radius of an operator T ∈ Bρ is not the same as the spectral
radius in B(L2(Rd)), since f does not satisfy the GRS condition.

Proof of Theorem 3.12
Assume T =

∑
λ∈Λ cλUλ is an invertible operator on L2(Rd) with finite support. Let

A,B > 0 be the bounds in

A‖f‖2 ≤ ‖Tf‖2 ≤ B‖f‖2 , ∀f ∈ L2(Rd)

Then

T−1 =
2

A+B

∑
n≥0

RnT ∗ (59)

where R = 1− 2
A+B

T ∗T . Since R has finite support let N := |supp(R)| <∞ and R0 > 0
so that supp(R) ⊂ ER0(0).

The goal is to show there exists a ρ > 0 so that T−1 ∈ Bρ. Clearly each term in (59)
belongs to Bρ. The only problem is to check the series converges in Bρ. To do so it is
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sufficient to show that
lim sup
n→∞

(‖Rn‖Bρ)1/n < 1 (60)

Let us choose ρ = 1
R0
ln B+A

2(B−A)
. Then eρR0‖R‖ ≤ 1

2
. Now we apply Lemma 5.1 to the

algebra Bρ, since f(x) = eρ‖x‖ is a submultiplicative weight. We obtain:

(‖Rn‖Bρ)1/n ≤ (n+ 1)N/(2n)eρR0‖R‖

By choice of ρ we obtain (60) which ends the proof of Theorem 3.12. Q.E.D.
Let us turn now to Theorem 3.14. First we recall the mixed norm Banach space

introduced in Section. 3. For a compact neighborhood of the origin I we denote by
L2,∞(Rd×I) the mixed norm Banach space defined in (25). An operator T =

∑
λ∈Λ cλUλ ∈

A extends from L2(Rd) to L2,∞(Rd × I) by

f ∈ L2,∞(Rd× I) 7→ Tf(x, y) =
∑

λ=(t,ω)∈Λ

cλe
i〈ω,x+iy〉f(x− t, y) , ∀(x, y) ∈ Rd× I (61)

Assume that for all λ = (t, ω) ∈ Λ, ‖ω‖ ≤ Ω, in other words Λ ⊂ Rd × EΩ(0). Assume
also I ⊂ Eρ(0), for some ρ > 0. Then

‖Tf‖2,∞ ≤
∑
λ∈Λ

supy∈Ie
−〈ω,y〉(

∫
Rd

|f(x, y)|2dx)1/2 ≤ eρΩ
∑
λ

|cλ|‖f‖2,∞

Thus
‖T‖B(L2,∞(Rd×I)) ≤ eρΩ‖T‖A (62)

This proves T extends to a bounded operator T on L2,∞(Rd × I). Let T (y) denotes the
restriction of T to the “slice” indexed by y of L2,∞:

T (y) : L2(Rd)→ L2(Rd) , T (y)f(x) =
∑

λ=(t,ω)

cλe
−〈ω,y〉Uλf(x) (63)

Note for Λ ∈ Rd × EΩ(0) each T (y) ∈ A and

‖T‖L2,∞(Rd×I) = sup
y∈I
‖T (y)‖B(L2(Rd)) (64)

Now we are ready to prove Theorem 3.14.
Proof of Theorem 3.14
(1) The estimate (28) follows from (62).
(2) From (63), (64) and Corollary 3.8 we get:

e−〈ω,y〉|cλ| ≤ ‖T (y)‖B(L2(Rd)) ≤ ‖T‖B(Xρ)
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Combine now with (28) to obtain:

|cλ| ≤ CeρΩ+〈ω,y〉

Assume there is a λ = (t, ω) ∈ Λ so that ‖ω‖ > Ω. Choose y ∈ Eρ(0) so that 〈ω, y〉 =
−ρ‖ω‖. Then

|cλ| ≤ Ce−ρ(‖ω‖−Ω)

should hold valid for all ρ > 0. At limit ρ → ∞ we get |cλ| ≤ 0 which proves that
supp(T ) ⊂ Rd × EΩ(0).

(3) and (4) follows from (1) and (2) by noticing that Fourier transform is an inter-
twining operator between the translation shift and the modulation shift that switches the
modulation and translation parameters. Thus (3) and (4) reduce to (1) and (2). Q.E.D.
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