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Abstract. We consider the initial value problem for the sphericallynsyetric, focusing
cubic wave equation in three spatial dimensions. We give nigalend analytical evidence for
the existence of a universal attractor which encompasségtmial and blowup solutions. As
a byproduct we get an explicit description of the criticah&eor at the threshold of blowup.

1. Introduction

We consider a semilinear wave equation in three spatial msinas with the focusing cubic
nonlinearity

O — Adp—¢° = 0. 1)

Heuristically, the dynamics of solutions of this equatiande viewed as a competition
between the Laplacian which tends to disperse the wavedentbnlinearity which tends to
concentrate the waves. For small initial data the dispersiins” leading to global solutions
which decay to zero as — oo. For large initial data the dispersive spreading is too weak
to counterbalance the focusing nonlinearity and solutldag up in finite time. For each of
these generic evolutions the leading asymptotic behasiknown: small solutions decay as
1/t? at timelike infinity [1, 2], while large solutions diverge &2 /(T — t) for t approaching
a blowup timeT" [3, 4]. The dichotomy of dispersion and blowup brings up thegtion of
what determines the boundary between these two behavidtsiraparticular, what is the
evolution of critical initial data which lie on the boundaBuring numerical investigations of
this question we observed that for a large set of initial ta¢ssolutions rapidly converge to a
universal attractor which is given by a two-parameter fgraflexplicit solutions of equation
(). The aim of this paper is to give analytic and numericaewnce for this behavior (which is
rather surprising for a conservative wave equation). Theerdlgtion of the critical dynamics,
which motivated our investigations, emerges as a specal. ca

The paper is organized as follows. In section 2 we recall sbawsc properties of
solutions of equation (1) and we formulate three conjesturkout the existence of the
attractor. Analytic evidence for these conjectures is miue section 3. After a short
description of our numerical methods and tests in sectiomedpresent numerical evidence
for the conjectures in section 5. Finally, in section 6 we ename general remarks.



Universality of global dynamics for the cubic wave equation 2
2. Preliminaries and conjectures

In this paper we restrict our attention to spherically syrrioesolutionsg = ¢(¢,r), so
equation (1) reduces to

2 .
att(yb*arr(b*; r¢*¢3:0- (2)
This equation is invariant under the following transforioas:
e translation in timel, by a constant

T, : o(t,r) — d(t+a,r), 3)
e scalingS, by a positive constant
1 t r
S)\ . (Zﬁ(t,’l") - X(b ()\a )\> ; (4)
e conformal inversion? (which is an involution)
1 t T
Fotn) — g0 (e s )

e reflectiong — —¢.

Neglecting the Laplacian in (1) and solving the ordinaryeintial equatiod,;¢ — ¢> = 0,
one gets the one-parameter family of spatially homogensolusions

V2
=—. 6
e (6)
This family is a special case of the two-parameter familyadfisons
V2
Plap(t,r) =

t+a+b((t+a)2—1r2)’ ()
which can be obtained from (6) by the action of conformal ei@n I followed by the time
translationT,,. The scaling transformatiofiy acting ong, ;) only rescales the parameters
of the solution without changing its form. Note that the sl ¢, ) (¢, 7) is singular on the
two-sheeted hyperboloid= —a — 1/(20) £+ 1/1/(4b?) + r2.

The main result of this paper is the observation that thel§a(i) is an attractor for a
large set of initial data. More precisely, we have the follugwconjectures about the forward-
in-time behavior of solutions of equation (2) starting fremooth, compactly supported (or
suitably localized) initial data (by time reflection symmyetnalogous conjectures can be
formulated for the backward-in-time behavior):

Conjecture 1. For any generic globally regular solutiofx(t,r) there exist parameters
(a,b) € R x RT andx = £1 such that* (¢(t,r) — k ¢4 (t,7)) is bounded for all finite:
andt — oo.

Conjecture 2. For any solutiony(t, r) which blows up at the origin in finite timé&, there
exist parameteréz, b) € R x R~ andr = £1 such that(T — ¢)=2 (¢(t,7) — K d(ap) (t,7))
is bounded fot — T~ inside the past light cone of the blowup point.

Conjecture 3. The borderline between dispersive and blowup solutiors;riteed respectively
in Conjectures 1 and 2, consists of codimension-one glpliefjular solutionss(t, r) for
which there exist a parameterc R andx = +1 such thatt* (¢(¢,7) — & ¢(a,0)(t, 7)) is
bounded for all finite- andt — co.
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The parametergz, b) for which the above assertions hold will be referred to agmugit

Remark 1: Conjectures 1 and 2 are refinements of the well-known asytiogtehavior of
solutions of equation (2)t~2 decay at timelike infinity in the case of global regulariter(f
small initial data) andy/2/(T — t) growth in the case of blowup (for large initial data),
respectively.

Remark 2: Although Conjecture 3 is a special limiting case of Conjeeti, we state it as a
separate conjecture to emphasize the critical charactéreddttractor solutio, ). Note
that the slowly decaying global solutions described in €onjre 3 are not asymptotically
free, i.e., they do not scatter.

Remark 3: The genericity condition in Conjecture 1 is essential beeaas we shall see
below, there do exist non-generic very rapidly decayindglly regular solutions which do
not converge to the attractey,, ;).

In the remainder of the paper we give evidence for the abomectures. The evidence
is based mainly on numerical simulations, however, befoeegnting numerics, we will give
two analytic arguments: one based on linearized stabitighyesis and one based on an explicit
solution.

3. Analytic evidence

3.1. Linearized stability

In this section we discuss the linearized stability of thteaator solutiong,, ;) (t,r). Since
linearization commutes with symmetries, we may@et b = 0 without loss of generality.
We denote the resulting solution lay, thus¢y = v/2/t. In order to determine the spectrum
of small perturbations around this forward self-similatusion we will use the symmetry
under conformal inversions. To this end, consider the regioO), the chronological future
of the origin (0, 0) of the Minkowski spacetime, and its foliation by spacelikgérboloids
(in this paragraph we follow Christodoulou [5])

t=c++Vc+r2, (8)

wherec is a positive constant. The hyperboloid (8) is asymptoti®fd (c), the future light
cone of the pointc, 0). Let us make the conformal inversion

I:(tr) e (£ 7) = (r2t—t2t2—rr2> . ©)

This transformation maps™ (O) (in the original coordinate system) fo (O) (chronological

past of the origin in the barred coordinate system). In paldr, the hyperboloids (8) are

mapped to spacelike hyperplanes

1

%
Now, consider a global-in-time solutiaf(t, r) inside /™ (O). In the barred coordinates

we have from (5)

o(,7) = (2 = r*)o(t, 7). (11)
It follows from the above paragraph that the study of the gagtics of (¢, r) for t — oo
is equivalent to the study of the asymptoticsggf, ) for ¢ — 0. In particular, there
is equivalence between linearized perturbationggpf= +/2/t for t — oo and linearized

perturbations ofyy = v/2/(—t) for £ — 0~. But the latter have already been determined in
[4, 6]. Namely, it has been shown there that the spectrum ob#iminearized perturbations

t=—c, where c= (10)
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about the backward self-similar solutiaf2/(—t) consists of a discrete set of eigenmodes of
the form (—£)* &, (y), wherey = 7/(—t) and Ao = —2,A; = 0,A\, = n(n > 2). More

precisely, we have the following eigenmode expansion at@gn

- 2 1 .
00(E,7) = co(=D) > + a1l —y*) +ea(=D’(1 = 3v° + ') + O((-D°) . (12)
By (11), this translates into the following eigenmode exgian aroundg, (where now
y=r/t)
1 11—2y%/34+9*/5
2 o
5¢(t,r):c0(1—y )+Clt72+62t74 (1_y2)3
The first two eigenmodes in the expansions (12) and (13) spored to the perturbations
along the symmetry orbitg, » (t, 7) ande, ) (t, ) respectively. For example, we have

+01/t?).  (13)

0 0 1
%qb(a,b) (t, ") (a=0b=0) ~ L —¥°, %(b(a,b) (t,7)](a=0,p=0) ~ ok (14)

The choice of the optimal parametefis, b) for the attractor amounts to tuning away the
coefficients of the symmetry modeg andc,, hence the rate of convergence to the attractor
is expected to be governed by the third eigenmode in the simas(12) and (13):

(5(57 ’F) - (E(a,b) (Ea f) ~ (_62 for E — 0" ) (15)
and
O(t,1) — bap)(t,r) ~ 1/t* for t — oo, (16)

which is consistent with our conjectures. Below we will fetthis expectation numerically,
but first we want to give a simple example which corroborai€3.(

3.2. The conformal solution

Equation (2) has the following globally regular explicitstion
2

VA4 =m0+ (t+7)?)
which we will refer to as the conformal solution. Note thastkolution corresponds to time
symmetric initial data

¢(0»7°) = m s

The conformal solution can be easily found in the framewdr&amformal compactification
which maps Minkowski space with the flat metnicinto the Einstein universe with the
conformal metrigy = Q27, where the conformal facté? = 2[(1+(t—7)2) (14 (t+r)?)]~1/2
[7]. Under this mapping the cubic wave equation+¢* = 0 transforms ta1,® — &+ &3 =
0, where® = Q~1¢. The trivial constant solutio® = 1 giveSgeons = (2.

By elementary calculation we find that for the conformal soluthe optimal parameters
of the attractow, ;) are(a,b) = (—1/v/2,1//2). More precisely, we have far— oo

d)conf (ta T) =

; (17)

9:9(0,7) = 0. (18)

1 3492 _
5+ 017, (19)

¢C07Lf(t?r)_¢( L4 )(t7r):_t74m

vz vE

in agreement with Conjecture 1.
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4. The numerical method and tests

4.1. The hyperboloidal initial value problem for the cubic wave equation

In order to study the asymptotic behavior of solutions anifyéhe conjectured convergence
to the attractor, it is convenient to foliate Minkowski sptime by hyperboloids. A time
coordinater adapted to such a foliation can be written as

th—y/%—krz. (20)

The level surfaces of are standard hyperboloids shifted in the time directioneyThave
constant mean curvatui€ which is a free parameter. In the following we gét= 3 for
simplicity. A foliation of Minkowski spacetime by level sebfr is depicted in Figure 1.

0O 1 2 3 4 5

Figure 1. The future domain of @ = 0 surface is partially depicted on the left panel in
standard coordinates and entirely represented on thepégtel in a Penrose diagram [7, 8, 9].
Dashed lines are level setsigkolid lines are hyperboloids shifted in time as given by (80
thick straight lines depict outgoing characteristics @adiing the location of the approximate
wavefront.

In order to be able to analyze the propagation of the outgeiages to infinity we
introduce a compactifying radial coordingtealong the surfaces of our foliation. For the
regularity of our equations in this compactified setting, pegform a suitable conformal
rescaling of the metric. The rescaling factor denotedoyust be a function 0p? to ensure
regularity at the origin in the conformal manifold. We cheds = (1 — p?)/2 following
[10, 11, 12]. The compactifying coordinate is then choseating tor = p/<Q.

We express the standard Minkowski metyio the new coordinate&r, p) and rescale it
with the conformal factof2? to obtain

g =% =—Q%dr? — 2pdrdp + dp* + p? do?, (21)

wheredo? is the standard metric on the unit two-sphere. We rewritetiidc wave equation
on Minkowski spacetime in conformally covariant form

1
Oy ® — cRlg] © + > =0, where ®= d 9= (22)

ﬁ )
The Ricci scalar of the metrig from (21) appearing in the above equation is given by
_12(0-p*) (3+p7)

ol = ey

With the auxiliary variables,

Y :=0,® and ™= g 2 (0 +p0,P),

+ p?
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we can rewrite the system (22) in first order symmetric hypkchiorm as

2
arq)zl—;p W—Plﬁ’
1+ p?
0.0 =0, (“5n - 0v). @3)

_ 1 o (140 1+p* (5 1
8T7r—p26p<p< 5 P p7r>>+ 5 P 6R[g}<1>.

The initial data are arbitrary in our conjectures. In the puoal studies presented below
we choose a Gaussian pulse

D(0,p) = Ae(Pmre)*/o” 9, ®(0, p) = 0, (24)

with fixed parameterg. = 0.3, o = 0.07, and varying amplituded. Tests for different
initial data give the same qualitative results which malketesl confident that the phenomena
described below are universal.

4.2. The code

We solve the hyperboloidal initial value problem (23,24)marically using 4th order Runge-
Kutta integration in time and 6th order finite differencimgsipace. At the origin we apply the
regularity conditiony(r,0) = 0. No boundary conditions are needed at the outer boundary
because there are no incoming characteristics due to thpamiification. One-sided finite
differencing is applied on the numerical boundaries.

Q

6.0

5.5¢

5.01

4.5¢

4-0 1 1 1 1 1 7'
0 2 4 6 8 10

Figure 2. Convergence factors in time measured in thenorm. The convergence factq
low med
is defined by = log, W. On the left panel we see that after a short transient

phase the code converges with 6th order. The dashed cumesponds to a simulation with
a 10 times smaller Courant factor and shows 6th order conveegfeom the beginning. The
right panel shows results of a long time convergence test rdidates loss of convergence
after aboutr = 1000.

To test the code we performed a three level convergence stittdy200, 400 and 800
grid cells on the coordinate domaine [0, 1] that has infinite physical extent. For this study,
we used an amplitude of = 2 which is below the critical amplitude, and a Courant factor
of Ar/Ap = 0.8. The convergence factors shown in Figure 2 indicate thagxpected,
our code is 6th order convergent after a short transienteph@be dashed curve has been
calculated using a much smaller Courant factod.08 to show that the initial transient phase
is due to numerical errors in the time integration that cogwewith 4th order. The long
time convergence plot on the right panel in Figure 2 showsadbavergence is lost at about
7 = 1000 for the number of cells used in this study. This is due to aadation of numerical
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errors and occurs at later times in tests with higher remolutWe give numerical evidence
for universal dynamics only in the convergent regime. Texel convergence tests using the
explicit conformal solution (17) give the same qualitatiesults.

Further tests can be performed using known properties otisok to the cubic wave
equation as studied in [4]. First, it is known that generi@rsolutions decay as 2 near
timelike infinity andt—! along null infinity [2]. It is clear from (7) that the attracteolution
has this behavior fdr > 0. In order to accurately measure the decay rate of the solatang
null infinity, near timelike infinity and in the transition dwin between these two asymptotic
regimes, we calculate the local power index(7), defined by

dIn|(r, p)|
T

Figure 3 shows that our code reproduces the predicted dateg/very accurately.

Decay Rate Blow—up Rat¢
Pp o
-1.0 i numericsd
1.2 10 theory -
Bl 106 L
~1.4
16 10
. Al
-1.8 10 P
-20 100Ck L i X
L L L L LT = . s L L L T
0 200 400 600 800 100C 100 100c 10° 100 10° 10 (=)

Figure 3. Left panel: The local power index calculated aloxg™, » = {100,20} and
at the origin from top to bottom. Right panel: A numerical smotthat blows up at the
origin is depicted by small squares and the theoretical ptiedi of the blowup is depicted
by the solid line on a log-log scale. The small squares are istilited uniformly in time
because we reduce our time steps while the solution growsfigires indicate that the code
reproduces the known decay rates for small solutions andltreup rate for large solutions
very accurately.

Second, it is known that large initial data lead to blowup ité time with the blowup
rate at the origin/2/(T — t) [3, 4]. This is in accordance with the attractor solution f(#)
b < 0. The right panel in Figure 3 shows the numerical solutiorhatdrigin for large data
on a log-log scale against the theoretical prediction obibe/up rate. The two curves match
over many orders of magnitude indicating that our code ckablg handle the blowup.

5. Numerical evidence for universal dynamics

The space of solutions to the cubic wave equation can beeatividto three parts: decay,
blowup and criticality. These parts correspond respelgtiseeb > 0, b < 0, andb = 0 for
the attractor solution (7). We will follow this natural ctfication in our presentation of the
numerical evidence for the universality of dynamics.

In many cases, the numerical evidence will be presentedrimstef the conformally
rescaled solution in the coordinates presented in the quie\dection. In these variables the
two-parameter family of solutions (7) takes the form (udimg abbreviatiorr = 7 + «a)

2v2
FHNOGE+) 1) - pP2F-DOF-1)+1)

(I)(a,,b) (Tv p) = ( (25)
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5.1. Decay

5.1.1. Convergence to the attractor According to Conjecture 1, the difference between the
attractor solution (with optimal parameters) and a genssiation should decay as# for
small data (16). This behavior is confirmed numerically igufe 4.

@ — @apll 4
0.001

— e Do T — e T
10 20 50 100 200 500100C 10 20 50 100 200 500 100C

Figure 4. Left panel: TheLy-norm of the difference between a generic decaying numerical
solution and the fitted attractor solution is depicted bystimall squares on a log-log scale. The
solid line, shown for comparison, has the slop4, in accordance with Conjecture 1. Right
panel: Modulation in the relative errofsof the parameters (solid line) andb (dashed line)

on a log-log scale. The modulation ferseems to decay @s ' and forb ast—2. The relative
error, sayd, for a, is defined a®, = |a(t) — a|/a wherea is the value of the parameter at
the last time step of the numerical evolution.

For this plot, we first fit the numerical solution to the attmac(25) to determine the
optimal parametergs, b). There are many possibilities for performing the fit. Oneglzifity
is to fit at a given grid point by regarding the attractor solutas a function of time. We
need to choose a starting time for the fit that is well behirdapproximate wavefront. We
perform such a fit at all grid points and take an average of #harpeters across the grid. We
need to make sure that the starting time is late enough sdhé&atariation of the obtained
parameters across the grid is small. The other possibdity ifit at a given time step by
regarding the attractor solution as a function of radius tangkpeat this process at different
times. We will refer to the resulting time variation of therpaneters as modulation. If our
conjecture is correct, the modulation should be small. Aghd, both methods should deliver
the same values up to a small error. This is used as a crosk-fitrethe quality of fitting.
The modulation of the parametatsandb in time is shown on the right panel in Figure 4.
We observe that the accuracy of the fittinghiis better than imw. This is due to the fact that
the perturbation generated by changindecays in time while the perturbation generated by
changingb does not (14), hence an error in determinbrig easier to spot.

Once the optimal parameters have been determined, we cerifgudifference between
the attractor solution and the numerical solution at eatie tstep and plot thé,-norm of
this difference in time. Figure 4 indicates that this diéiece falls off ag—*, as claimed in
Conjecture 1.

5.1.2. Exceptional solutions As mentioned above in Remark 3, not all globally regular
solutions converge to the attractyy, ;). The existence of exceptional solutions with different
asymptotic behavior can be seen as follows. Consider a areveter family of initial data,
such as (24). It turns out that along such a family typicdligré occurs a flip of sign of the
attractor, that is, there is a (subcritical) amplitude, such that forA < Ay the solutions
converge to, sayp(,) and forA > Ay they converge te-¢, ;). Performing a bisection
we may easily fine-tune the amplitudeAg and generate a special solution (below referred
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to as the flip solution) that is not an element of the attrafzorily. One can expect that the
flip solution will have a faster decay rate than the generibal solutions. This expectation
is confirmed in Figure 5 which shows that the flip solution gecast—3 at timelike infinity
and ast—?2 along null infinity. By modifying the initial amplitude sligly away from the flip
solution, we can see that the decay rates of the generidawdidre attained at late times after
a transient phase. Note that by construction the flip soisticorrespond to codimension-
one initial data. It is likely that there exist initial dat&ligher codimensions which lead to
globally regular solutions with even faster decay ratesidwer the numerical construction of
such solutions would be very difficult.

Pp DPp
—2.0¢ -1.0¢
—22 15}
_2.4’
e 20t
_2,8¥ 25
_30
o -30
L L L L L 7_ L L L L L T
0 200 400 600 800 100C 0 200 400 600 800 100C

Figure 5. On the left panel we plot decay rates for the flip solution with = 2.4913 along
the surfaces? *, r = {100, 33, 14,0} from top to bottom. On the right panel we plot the
decay rates for a solution with initial amplitude; — 0.01 along the same surfaces. Here, the
generic decay rates are obtained after a much longer timelhamtFigure 3.

5.2. Blowup

5.2.1. Convergence to the attractor Merle and Zaag proved in [3] that the ODE solution
V2/(T — t) determines the universal rate of blowup for equation (1)véwer the problem
of profile of blowup remains open. Numerical simulationspharical symmetry [4] showed
that for a solution which blows up at the origin, its deviatioom v/2/(T — t) near the tip of
the past light cone of the blowup point is very well approxietbby the second eigenmode in
the expansion (12) (see Fig. 4 in [4])

V2 2
-~ 1— ——
ot - 2~ (1= g ) (26)
however an error on the right hand side was not quantified]injdcording to Conjecture 2
the approximation (26) may be improved to

¢(t7 T) - ¢(a,b) (ta 7") ~ O((T - t)2) ) (27)

provided that the paramete(s, b) are optimal.

The numerical verification of the formula (27) is shown in tig 6. The data for this
plot were produced using a code based on standard Minkowskdimates.

We point out that there is no genericity condition in Conjeet2. This might appear
surprising in view of existence of a countable family of rieguself-similar solutions of
equation (2) [13, 14]. It seems that these self-similar ttmhs do not play any role in the
Cauchy evolution, which is probably due to the fact that tb@ytain singularities outside the
past light cone of the blowup point.



Universality of global dynamics for the cubic wave equation 10
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Figure 6. Blowup at the origin in standard coordinates on a log-logescdhe difference
between the attractor solution and the numerical solutiafescted by small squares. The
linear fit (solid line) gives the slop2.02, which confirms Conjecture 2. The deviation from
the straight line seen at times very close to the blowup timeiéstd the fact that the domain
of analysis extends beyond the past light cone of the blovaimtp

5.2.2. Blowup surface Forb < 0 the attractor solutions blow up along a hyperboloid

1 /1
- g - — _ 2
t a 2b+ 12 +re. (28)

This surface has the form (20) with the mean extrinsic cumeak’ = —6b. Hence, for our
choice of the hyperboloidal foliation witlk = 3 the blowup surface of the attractor with
b = —1/2 coincides with one leaf of the foliation. Therefore, if Cedjure 2 is correct,
in the case of the blowup solution converging to the attraatith the optimal parameter
b = —1/2 we should observe an approximately simultaneous blowupgalee whole grid.
This expectation is verified in Figure 7.

P

100C
SOO‘W
loo‘w

50

lO‘W
‘ ‘ ‘ p

Figure 7. Approximately simultaneous blowup along the numerical gridciwvthas infinite
physical extent. We plot the solution on a log scale at varitime steps close to the blowup
timeT'. The solid lines depict an attractor solution wtk= —1/2 at the corresponding times.
The times are from bottom to top7 = T'— 7 = {0.34, 0.1, 0.02, 0.007, 0.003, 0.0008}.

Note that, for a given constant mean curvature foliatioa,dimultaneous blowup is not
generic. To produce data for Figure 7 we used the dependdricerothe amplituded of
the gaussian. For relatively small (but supercriticaluesl of A we have—1/2 < b < 0
and the blowup first occurs at null infinity, while for largenplitudes we havé < —1/2
and the blowup first occurs at the originPerforming bisection between these two states we
fine-tuned to the blowup solution with= —1/2.

1 For very large amplitudes the blowup first occurs on a sphérard then Conjecture 2 does not hold.
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We would like to emphasize that a rather counter-intuitibermomenon of blowup at
null infinity is a mere coordinate effect which occurs if thieveup surface has a smaller
mean extrinsic curvature than the hyperboloidal foliatised in the numerical simulation.
Nevertheless, as discussed above, we can use this effeat faleantage to probe the shape
of the blowup surface. Note also that one can predict the dgbost null infinity by fitting the
attractor to the numerical solution at the origin. If thisites a value ob € (—1/2,0), then
we know that the solution will blow up at null infinity even thgh it is decaying at the origin
(see Figure 8).

Figure 8. Blowup at null infinity. The numerical solution (small squared the times
(counting, near the origin, from top to bottorm)= {2.3,3.2,5,7,25} is compared to the
attractor solution (solid line) with = —0.02. We see that the solution grows at null infinity
while it decays near the origin.

5.3. Critical behavior

Now we consider the behavior of solutions for initial datady at the boundary between
dispersion and blowup. Let us recall that this problem wadressed before in [4] for
the focusing wave equatiofi,, ¢ — A¢p — ¢P = 0 with three values of the exponept
(corresponding to three different criticality classeshwigspect to scaling of energy):= 3
(subcritical), p = 5 (critical), andp = 7 (supercritical). It was shown there that the
nature of the critical solution, whose codimension-onblstenanifold separates blowup from
dispersion, depends gn for p = 7 the critical solution is self-similar, while fgsr = 5 it is
static. Fop = 3 the critical solution could not be determined because oferigal difficulties
(although with hindsight it could have been inferred frorgl¥e 11 in [4]). Now, in view of
Conjectures 1 and 2 which assert that the solufigyy, is an attractor for generic dispersive
solutions ifb > 0 and for blowup solutions # < 0, it is easy to guess that the critical solution
corresponds tb = 0, hence it has the form,. = v/2/(t + a).

The critical solution is difficult to study with standard narital methods by bisection
because it is a globally decaying solution, but it can beistudery accurately with the
conformal method. The reason is that the conformal scatiotpfs out the leading asymptotic
behavior implying that thé /¢ decay of the critical solution is factored out at the confafrm
boundary. Specifically, the rescaled critical solutibn = ¢./€ in the new coordinates as
given in (25) evaluated at null infinity becomds| ,+ = @, 0)(7,1) = V2, hence the
deviation of®| ,+ from /2 can be used as a bisection criterion. On the left panel ofrEigu
9 we plot the critical solution on the grid at various timepst@and compare it to the attractor
solution withb = 0 and fitteda. We see that the solution is decaying while its value at
4+ = {p = 1} is constant. The instability of the critical solution candgzn by evolving
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Figure 9. Left panel: The critical solution on the grid at times= {2, 3,5, 8,13, 34,89}
(counting from top to bottom). We see thatrat= 2 the solution is not yet described well by
the attractor solution, but already after= 3 the agreement is good. Right panel: Numerical
solutions close to the critical solution evaluated at miinity. Denoting the initial amplitude
for the solution that corresponds to the almost constard $iak at+/2 by A.., the deviating
dashed curves havé = A. & 10~9, the deviating solid ones have = A, + 108,

initial data that differ slightly from the critical amplitle A. — for such data the deviation from
V2 at 7 grows linearly with time. This is depicted on the right pao&Figure 9 for four
different values of marginally critical amplitude.

6. Final remarks

We wish to emphasize that the use of the hyperboloidal folia{20) in combination with
the conformal method was instrumental in unraveling theadyies of global solutions
of equation (2). First and foremost, this method eliminaties need of introducing
an artificial boundary, which is a notorious problem in cotiy wave propagation on
unbounded domains. Second, the intersection ef const hyperboloids with#+ increases
monotonically with7 leading to the dispersive dissipation of energy along tlaede of
the foliation which is a mechanism responsible for convecgeto the attractor. Third, the
conformal rescaling allows a very accurate computatiorhefdritical solution by factoring
out its leading asymptotic behavior. Finally, with this apgch we can probe efficiently the
shape of the blowup surface and observe the simultaneowsiplon the whole grid.

Our main observation that a simple family of exact soluticas act as a universal
attractor for solutions of the nonlinear wave equation waaxpected to us. It is clear that
this surprising phenomenon is intimately related to thda@anal invariance of the cubic wave
equation, and therefore it is more a curiosity than a statdperty, in particular it is absent
for semilinear focusing wave equations

O¢ +[¢[P"'¢ =0 (29)
with p # 3. However, we conjecture that the threshold behavior medidily the

slowly decaying global solution is structurally stable etsense that the ODE solution of
equation (29)

1
= % , where c= |:2(p—’_1):| o ,
(t+a)7T (p—1)°
is a critical solution for all exponents satisfyingt v2 < p < 3. Note that the decay rate
of the critical solution2/(1 — p), and the decay rate of generic solutiohs; p, merge for
p — 1+ /2, which is consistent with the fact that fpr< 1 + /2 all solutions of equation
(29) with compactly supported initial data blow up in finiteé [15].

(30)
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