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Particle-in-Cell (PIC) methods have been widely used for plasma physics simulations in the past three
decades. To ensure an acceptable level of statistical accuracy relatively large numbers of particles
are needed. State-of-the-art Graphics Processing Units (GPUs), with their high memory bandwidth,
hundreds of SPMD processors, and half-a-teraflop performance potential, offer a viable alternative to
distributed memory parallel computers for running medium-scale PIC plasma simulations on inexpensive

commodity hardware. In this paper, we present an overview of a typical plasma PIC code and discuss its
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GPU implementation. In particular we focus on fast algorithms for the performance bottleneck operation
of particle-to-grid interpolation.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Numerical simulations of magnetized plasma (ionized gas)
comprise an active fundamental area of research in modern com-
putational physics. Plasma consists of charged particles whose in-
dividual trajectories and collective behavior produces effects on a
wide range of temporal and spatial scales. Although the fundamen-
tal principles governing plasma dynamics, namely Maxwell’s equa-
tions and statistical mechanics, are well known, obtaining their
solution under realistic assumptions and relevant physical regimes
is a problem of outstanding computational complexity.

Particle-In-Cell (PIC) methods represent one of several kinetic
approaches to plasma simulation. These methods, based on
hybrid Lagrangian-Eulerian formulation of dynamics, involve
following the trajectories of virtual (marker) particles in the
system phase space. A major challenge for PIC methods is the
sheer magnitude of the number of particles needed to faithfully
represent the underlying physics, a constraint that has historically
pushed PIC implementations into the realm of distributed
memory supercomputing, [ 10]. Several reduction techniques, most
notably gyro-kinetics, have helped relax this constraint and have
allowed moderately sized, physically meaningful simulations to be
performed on smaller scale platforms.
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PIC methods operate on the assumption that interactions
among particles are carried out through electromagnetic fields.
A rectilinear grid is typically used to obtain a discretized
representation of the fields over the simulation domain. Solving
the evolution equations of the fields is one of main components of
a PIC code; however its execution time accounts for only 2%-15%
of the simulation’s total time [4]. The remaining time is spent on
evolving particles and calculating the particle-field interactions,
expressed computationally as local interpolation operations.
These operations are the major performance bottleneck of PIC
codes. Strategies to optimize PIC performance have been studied
and implemented extensively for codes running on large scale
distributed memory architectures. These fall mainly in two
categories: particle decomposition schemes for optimal load
balancing and particle sorting for improving CPU cache coherence
(see for instance [2,22,16]).

Inspired by the latest trends and developments in graphics pro-
cessing technology we investigate the feasibility of implementing
PIC methods on the GPU. In particular we focus on particle-to-grid
interpolation as it is expected to dominate the execution pipeline
and to be the most challenging component in terms of performance
optimization. While we restrict our attention to PIC simulations,
we emphasize that the same type of local interpolation is common
to many other application areas (see for instance [ 18]) where con-
version between scattered-point and structured-grid data takes
place.

General Purpose GPU (GPGPU) computing was pioneered six
years ago with the advent of the first programmable graphics
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processors. It has experienced a significant boost within the
past year, after the introduction of NVIDIA’s Compute Unified
Device Architecture (CUDA) technology, which offered not only a
faster, massively parallel hardware platform, but also enhanced
programming environments and tools for scientific computation.
Since CUDA’s public release successful implementations from
various application areas have emerged and have demonstrated
the efficiency and the tremendous performance gain potential that
the new architecture has to offer.

At the same time it has become apparent that certain classes
of algorithms are better suited to perform well on the GPU than
others. The specific memory hierarchy, while beneficial to some
types of operations, poses challenges to others; for instance, those
that rely on random memory access suffer performance losses
that have the potential to eliminate entirely the benefits of GPU’s
high theoretical throughput. Also, algorithms with low arithmetic
intensity relative to the number of memory operations will be, in
general, less efficient.

For instance plasma simulations based on nonlinear MHD
models have shown excellent optimization potential on the
GPU, [19,5] due to their natural formulation exclusively in
terms of matrix-vector operations. Particle simulations based
on computational strategies other than PIC, such as molecular
dynamics [20], and N-body gravitational dynamics [12], have
also been implemented efficiently. In these simulations, particles
interact among themselves via long range forces which are either
calculated exactly by summing over all possible particle pairs
or approximated via a suitable series truncation. The apriori
higher arithmetic intensity of these methods predicates the large
performance gain achieved in their implementation

Particle-To-Grid interpolation, on the other hand, performs
only a few arithmetic operations per data point and, without
modification, exhibits memory access patterns that are inherently
random. However, even with these apriori deficits, Particle-To-
Grid interpolation can still be implemented efficiently on the
GPU with proper data rearrangement and algorithm adjustment.
For instance, Sorensen et al. [18] have recently demonstrated
very good speedup factors for their GPU implementation of the
gridding step of the Non-uniform FFT (NFFT) algorithm, which
mathematically is identical to Particle-To-Grid interpolation. In
the context of NFFT, however, the set of scattered data points is
static and thus a preprocessing data rearrangement step needs to
be executed only once. In contrast, in PIC simulations particles
change positions from one time step to the next, thus requiring a
dynamic data structure optimized both for efficient updates and
fast memory access.

This paper is organized as follows: in Section 2 we give and
overview of the current trends of GPGPU computing. Section 3 out-
lines the general PIC simulation framework. Section 4 discusses the
Particle-To-Grid interpolation operation and possible implementa-
tion strategies. In Section 5 we derive a fast parallel Particle-To-
Grid interpolation algorithm tailored specifically for the GPU. In
Section 6 we present some of the CUDA implementation details and
discuss performance results.

2. Overview of GPU computing

Bolstered by significant increase in performance capabilities
over the past six years and recent improvements in programma-
bility, graphics processing units (GPU) are entering into the
mainstream of modern computing. The current high-end GPU is
a powerful parallel processor whose functionality is no longer
confined to the traditional graphics pipeline. GPU’s have sus-
tained super-Moore’s law rate of performance increase for almost
a decade now. The primary driver of this phenomenal growth has
been the highly parallel nature of graphics computing, as well
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Fig. 1. Performance comparison between GPUs and CPUs measured in GFLOPS as
peak throughput. Data points derived from graphs in [11,21,9].

as order-independence, pipelining, and streaming, all part of the
graphics processing paradigm.

In addition, high demand from the video gaming industry
has helped maintain relatively constant GPU retail prices which
has brought the performance cost of computing down to
unprecedented levels. As a reference, the performance of the
top NVIDIA G80 (GeForce 8800 Ultra) GPU is approximately
470 GFLOPS, which translates into about $1.40/GFLOPS; in contrast
the performance of a 3.0 GHz Intel Core2 Duo CPU is close to 50
GFLOPS, or $4/GFLOPS [11]. Note that this improved performance
is achievable only if the problem maps well to the underlying
processor architecture.

The diagram in Fig. 1 shows the rapid rise in the floating-point
performance of GPUs as compared to the multi-core Intel CPUs.
GPU memory size is also growing, albeit more slowly, with current
generation GPUs offering up to 1.5 GB of RAM. At present, GPUs
support IEEE single-precision floating point arithmetic, but double
precision support is expected on NVIDIA chips by the second half
of 2008.

While all aforementioned features are undoubtedly attractive,
one particular aspect of modern GPUs has proved crucial in
enhancing their impact on scientific computing. The introduction
of NVIDIA’s Compute Unified Device Architecture (CUDA) has
turned GPUs from esoteric special-purpose co-processors into
highly accessible, programmer friendly, parallel supercomputers
for the consumer-level desktop. As such, CUDA has the potential
to “democratize” parallel computing and bring high-performance
paradigms into the mainstream [9].

CUDA supports the single-program, multiple-data (SPMD)
programming model, which is currently one of the dominant
parallel processing paradigms. CUDA allows GPU programs to be
written in ANSI C (with a few extensions), rather than graphics-
oriented language, like Cg or GLSL, that were designed for
shading algorithms. The current CUDA distribution provides BLAS
and FFT libraries designed to take advantage of the hardware’s
new capabilities. In addition, various algorithm-oriented libraries
are under development, most notably the CUDA Data Parallel
Primitives (CUDPP) library [7].

Since CUDA’s official introduction in early 2007, numerous
scientific applications from areas as diverse as physics, numerical
algebra, computational biology, and mathematical finance, have
been implemented and tested on the new architecture. Speedup
factors of up to several hundred have been noted in comparison
with the respective serial CPU implementations [9]. Two main
factors seem to have most effect on the acceleration potential for
a given application: arithmetic intensity per memory operation
ratio and the prevalence of random memory access patterns. In
general, applications which perform many arithmetic operations
between memory read/writes, and which minimize the number
of out-of-order memory accesses, tend to perform best. These two
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factors are not necessarily unique to CUDA but their impact seems
to get disproportionately amplified by the architecture’s specific
hardware features.

We will not attempt to go any further into the details of
CUDA’s hardware and software models. Excellent introductions,
reviews, and tutorials have been presented elsewhere in printed
as well as in multimedia form (cf. [9,11,8,20,13,14]). However,
for the sake of completeness we include a simplified version of
the two basic diagrams that illustrate CUDA’s execution patterns
(Fig. 2b) and memory hierarchy (Fig. 2a) as presented in NVIDIA’s
CUDA Programming Guide, [11]. We also point out that while
other GPU platforms, such as IBM’s Cell and more recently AMD’s
FireStream, can be taken into consideration, our discussion is based
specifically on CUDA. We believe this is not a major limitation as
the main issues involved in parallel PIC simulations will persist
among all current high-end programmable GPUs regardless of
their underlying chip technology.

3. PIC method overview

Particle-In-Cell methods are a class of numerical simulation
methods used to model physical systems whose behavior varies
on a large range of spatial scales. On a macroscopic level the
dynamics are typically described by a continuum model (a
system of PDE’s) whereas microscopically they are modeled by
a collection of discrete particles. Dealing with each of these
descriptions separately can be problematic; for instance the large
scale nonlinear behavior of plasma is determined in part by
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Fig. 3. Typical time step cycle of a PIC code. Particle related quantities are indexed
by i. Field quantities are typically discretized on a uniform rectilinear grid; their
indexing is not shown here.

Coulomb interactions between electrons and ions and thus cannot
be fully described by a continuum model alone. On the other
hand physically realistic simulations on a microscopic level require
numbers of particles (on the order of 10?3) that are prohibitively
large by any current computational standards. Particle-In-Cell (PIC)
methods attempt to circumvent both of these issues and bridge the
gap between the macroscopic dynamics of each particle and the
macroscopic behavior of the system.

3.1. Main components of PIC codes

A PIC simulation is concerned with the time evolution of
two types of objects: particles and fields. Particle trajectories are
computed by integrating Newton’s equations, usually written as
a system of first-order ordinary differential equations. Fields are
considered continuous quantities and are discretized on a (usually
uniform, rectilinear) grid over the problem domain. In contrast
with Molecular Dynamics or Gravitational N-Body systems, the
effect of binary particle interactions is approximated via self-
consistent particle-field interaction. Specifically, the motion of a
single particle with position x, velocity v, and mass m is given by:

dv
m— =
dt

dx
vy
dt
where F is the force acting on the particle. In a plasma the force

in general has two components, corresponding to the electric and
magnetic fields, respectively:

F=q(E+v x B).

F
(1)

In this equation the fields are to be calculated at each particle
position. Computationally, this requires interpolation from the
fixed spatial grid of the fields to the scattered set of points at which
particles are considered to reside within the given time step. We
refer to this operation as Grid-To-Particle Interpolation.

Eq. (1) is solved using a numerical integration scheme, for
instance the time-centered leapfrog method, [1]. At the end of
each time iteration, the positions and velocities of all particles
are updated, which induces an update to the particle density p
and current J, both evaluated at the grid vertices. Calculating p
and J from the set of scattered particle positions onto the fixed
spatial grid is carried out via Particle-To-Grid interpolation. From
the values of p and J on the grid, the electric and magnetic fields are
computed and evolved through the current time iteration step by
numerically solving Maxwell’s equations. The details of this step
can vary significantly depending on the underlying physics, and
we omit them as they lie outside the scope of this discussion. A
schematic diagram of the fundamental steps involved in the PIC
time iteration cycle is shown on Fig. 3.

As mentioned in Section 1, during a PIC simulation the
most time is spent on the Grid-To-Particle and Particle-To-Grid
interpolation steps. We focus on the latter since it proves to be
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the more computationally challenging of the two; moreover the
same strategy employed to interpolate quantities from particles to
grid works almost verbatim in the opposite direction as these two
operations are, in a sense, dual to each other.

4. The Particle-To-Grid interpolation operation

The Particle-To-Grid interpolation operation generalizes the
familiar histogram approximation of the phase space probability
density function onto a uniform rectilinear grid. Specifically, in
dimension d, given a box shaped domain D = [aq, b;] x --- X
[aq, b4l C RY, a set of points {p1, pa, ..., pa} C D, and a uniform
grid

d
GdZEf USZZSAeA |S)L EZ} ()]
r=1

the value of the probability density function f at each vertex vy is:

Fs) =) wik(vs, py) 2)
i=1

where s = {s1, 5o, ..., Sq} is a multi-index, {e;} are orthonormal
basis vectors in RY, {w;} are weight coefficients, and K is an
interpolation kernel.

In most practical applications K is a local linear interpolation
kernel of tensor product type, which in dimension one is
exemplified by the familiar “hat” function; for instance a kernel
with support suppK = (—1, 1) is defined as:

1—|x],

K(0. %) = {0 if [x] <1

otherwise.
In dimension two, if K has support on the unit square,

(1= xD(1 = |yD,

if |x 1, and 1
K((0,0). (x.) = {0 X = and vl <

otherwise

is a quadratic function, whose graph is a piecewise hyperbolic
sheet. This construction readily generalizes to higher dimensions.
The use of a local linear interpolation kernel of this type implies
that, for each vertex vs, only particles contained in cells incident
with vg will have nontrivial contributions to the sum in Eq. (2):

f) =Y wik(vs,p) (3)

pi€ PAlvs)

where P(vs) is the collection of particles in the cells incident with
vertex vs.

For a particle p; let (p;)) = {vs,, ..., vsq} denote the set of
q = 2% vertices of the grid cell to which p; belongs. The contribution
of p; to the value of f at each vertex vs € W(p;) is precisely
w;iK (vs, pi). This expression has geometric interpretation as the
Euclidean measure for the volume “opposite” to the vertex vs; with
respect to p;. For instance, in dimension d = 2, the contribution
of a particle can be computed via the “opposite area” formula (see
Fig. 4).

4.1. Computational strategies

The two maps defined above, particle-to-vertex: p; — V(p;),
and vertex-to-particles: vs — P(vs) are in some sense dual to each
other; they motivate two complementary strategies for computing
the particle density function f over the entire grid G.

4.1.1. Particle pull
In this case particles are “pulled” by the grid vertices. Pseudo
code is given in Algorithm Listing (1)

'{J,T;Anl in‘JiA[m
Ao A
4
Dbi
Ao Agy
w;An 'LUiAlﬂ

Fig. 4. Illustration of the “opposite area” formula. Each area Ay multiplied by the
weight coefficient wj; is the contribution of p; to the particle density function at the
vertex on the opposite diagonal.

// Loop over vertices first
foreach vertex vs € G do

find P(vy);

flus) <= 0;

foreach p; € P(vs) do

f(vs) < flvs) + wiK (vs, pi)

end

end

Algorithm 1: Particle pull

// Initialize f(vg)
foreach vertex vs € G do
flvs) <= 0;
end
// Loop over particles first
foreach particle p; € D do
find V(py);
foreach v € V(p;) do
f(vs) < f(vs) + wiK (vs, pi)
end
end

Algorithm 2: Particle push

4.1.2. Particle push
In this case particles are “pushed” onto the grid vertices. Pseudo
code is given in Algorithm Listing (2)

4.2. Method comparison

Each method has its own advantages and disadvantages. Let N
denote the total number of particles and k the total number of
vertices. The Particle Push method

e is less efficient: requires O((2¢ 4+ 1)N) read/write operations;
e however, V(p;) is of fixed length and is readily computed
dynamically from the particle’s coordinates.

At the same time, the Particle Pull method

e is more efficient: requires 02N + k) read/write operations;
in practice k < N and thus complexity is dominated by the
magnitude of N;

e however P(vs) would be prohibitively expensive to retrieve
dynamically unless particles are organized in some efficient
spatial data structure.

Furthermore, a direct parallel implementation of the Particle
Push method is prone to memory collisions since V(p;) and V(p;)
will have a non-empty intersection for each pair of particles
{pi, p;} thatis processed simultaneously by concurrent threads. The
availability of atomic memory operations could resolve this issue,
however at the expense of reduced performance.
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In addition, it becomes clear that, ifimplemented without mod-
ification, both methods would suffer from a common drawback,
namely random memory access. This would occur since for each i,
and each s, not all elements of V(p;), or P(vs) will, in principle,
reside in contiguous aligned memory locations. While a large cache
CPU may alleviate the problem in the case of a serial implementa-
tion, on the GPU, random-memory access can be a big performance
bottleneck. In particular, for CUDA a read/write operation from/to
global memory takes 400-600 clock cycles (the same operation to
shared memory takes only 4). This latency can be hidden if threads
perform their read/write operations in a coalesced fashion, i.e. a
block of threads reads from (writes to) a block of adjacent type-
aligned memory locations.

We attempt to overcome the deficits of each method by
following a hybrid type approach and organizing data in a way
that avoids the aforementioned problems and improves the time
complexity of the memory access operations.

5. Toward a fast Particle-To-Grid interpolation algorithm

We now focus on describing an efficient interpolation algorithm
specifically tailored for the GPU parallel environment. One major
constraint of the GPU that we recognize is the amount of on-
board memory, currently 768 MB for G80 chips and 1.5 GB for
Tesla. Thus, in order to to fit as many particles as possible, we
must minimize the memory footprint of the data structures we use
and whenever possible rely on in-place data transformations. The
following discussion assumes that these objectives are taken into
consideration at all times.

From the analysis in the previous section it becomes apparent
that a fast algorithm’s data processing strategy should be based on
the Particle Pull method. One way to deal with the issue of the
inherently inefficient J(vs) retrieval is to organize particles in a
linear array such that for each vs the elements of P(vs) occupy a
contiguous section of that array.

5.1. The bookmarked particle array

Suppose that pointers marking the endpoints of each section are
given as a satellite “bookmark’” array. Access to P(vs) is efficient as
itonly requires sequential traversal of the corresponding section of
the particle array. To ensure non-overlapping access from vertices
sharing common subsets of particles in their associated P(vs) sets,
this type of data structure would have to be made redundant in the
sense that each particle would have to appear in multiple sections
of the array. This would result in memory complexity of O(2¢N)
which, given the memory limitations of the current generation
GPUs, would make it unfeasible for any practically meaningful
values of N.

5.2. The cell based particle pull method

A viable alternative is to “transfer” the memory redundancy
over to the grid data structure. To this end, we work with the grid
G dual to G; i.e. the elements of G are the 2-dimensional cells of G.
Let cs denote the cell with multi-index s and let be the map from
the set C of grid cells to the set P of particles:

P:C — P
cs—>{peP|pecs

i.e. P(cs) is the collection of particles contained in cs. We modify
the Particle Pull method described in Section 4.1.1 to accommodate
for this change in the underlying data structure. In particular, we
keep a copy of the accumulated value of f at each of the 2¢ vertices
of ¢s. This means that the memory complexity of this method will
be 0(2¢k) which for k < N is a considerable improvement over

Fig. 5. Illustration of the vertex accumulation process: corresponding values from
all cells sharing a vertex are accumulated and the result is stored in the output array.

the original version. We call this modified method the Cell Based
Particle Pull, or CBPP for short, since particles are being “pulled”
out of their data container on a per cell basis.

For the CBPP method the bookmarked particle array data
structure requires some modification accordingly. If, for instance,
particles are arranged so that P(cs) occupies a contiguous section
of the bookmarked array for each grid cell c;. Then access to each
subset P(cs) is still efficient and, since distinct cells do not share
particles, duplication of data is eliminated. As a result, the time
complexity of the CBPP method is O(N + 2¢k), which for k < N is
superior compared to O(2N + k) for the “Vertex Based” Particle
Pull method discussed in Section 4.1.1.

5.3. The Cell-To-Vertex density accumulation pass

The output from the CBPP method is an array of 2¢-tuples of
values; each 29-tuple represents the contribution of the particles
in the associated cell to the values of f at the vertices of that cell.
To obtain the final per-vertex value of f an additional pass through
the grid data structure is required. Specifically, each vertex vs of G
picks up exactly one value from each of the 2¢ cells incident with it
(see Fig. 5 for a 2D example) and since the grid traversal is uniform,
the execution time is fixed for given k and d; it is at least an order
of magnitude smaller compared to that of the Cell Based Particle
Pull step (see discussion below).

5.4. The preprocessing step

The issue that remains to be addressed is how to arrange the
particles in the bookmarked particle array requisite for the efficient
execution of the CBPP algorithm. One way to accomplish this is
for each particle to compute the global array index of the cell to
which it belongs; then use that index as an integer key to sort all
particles. Bookmarks can then be computed readily on a second
pass by comparing adjacent key values. However, performing a full
sort at the end of each iteration of the PIC code can be prohibitively
expensive; for desirably large values of N the execution time of a
full sort could be several orders of magnitude larger compared to
that of the CBPP step itself.

The requirement for a full particle sort can be relaxed if we
consider the dynamics of particle motion modeled by the PIC code.
In many applications, for instance, particles do not traverse more
than a few grid cells per time iteration step. This means that most
particles will not leave their respective cells and a few will drift at
most 1, cells away. Let us assume, without loss of generality, that
n. = 1; the case when n, > 1 but still small, is treated similarly.
Assume that an initial global sort has been performed and that
particles have been arranged in a bookmarked particle array. We
show that after a PIC iteration step particles can be rearranged and
bookmarked in place in O(N) time.

To achieve this we change the “granularity” of the bookmarked
particle array. In particular, we increase the size of each
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bookmarked section to include all particles that map not to single
cell but rather to a cluster of cells. We refer to these enlarged
bookmarked particle array sections as bins. More precisely, let G, =
{Cs;, ..., Cs,} be acluster of cells. Then the bin associated with C, is
P(C,), where Pis the cell-to-particles map defined in Section 5.2.
We choose the geometry of the clusters in such a way that after
one PIC iteration step particles will either stay within the same
bin or will move at most to the adjacent one. A natural solution
is to define a cell cluster to consist of all cells that lie on a hyper-
slab of co-dimension 1 in D: for instance take the collection of cells
with a single fixed index. Two adjacent bins in the bookmarked
array map to adjacent clusters in the grid cell array (see Fig. 6).
For specific architectures (e.g. CUDA), and problem sizes, however,
such hyper-slab cluster partitioning may not be feasible due to
the limited shared memory resources available per multiprocessor.
Alternative partitioning schemes are discussed in Section 6.4.

The key observation that makes a particle binning algorithm of
O(N)complexity possible is that the CBPP method does not depend
on the order of particles within each bin and thus an “incomplete”
particle sort would suffice. Our algorithm consists of two passes:

Particle de-fragmentation. After a PIC iteration step, each existing
particle bin will contain three types of particles: those that remain
within the bin; and those that need to be moved to the bin on the
right or to the bin on the left, respectively. During the Particle De-
fragmentation pass particles are partitioned in three groups with
respect to the associated cell index with pivot values determined
by the cell cluster boundary index. More specifically, let P =
{pi;, ..., pi,} be a bin of particles that maps to a cluster of cells
C = {c,...,Cs,}. Since a cell cluster, by definition, is laid
out in contiguous memory, the set of multi-indices {sq, ..., Sy}
corresponds to a set of consecutive integer grid array indices {j, j+
1, ...,j+m}.Foraparticle p; letI(p;) denote the associated integer
grid array index. The goal of this pass is to partition the set P into
three subsets:

L={peP|Ip <j}
R={peP|Ip) >j+m)
S={peP|j<=Ip <=j+m}h

This is accomplished by element swapping in two consecutive
traversals of P, one forward, with pivot value equal to j and one
backward, with pivot value equal to j + m (see Algorithm Listing
(3)). Inthe end the elements of P are permuted in such a way that
P = {L; S; R}. Bookmarks are adjusted to indicate the endpoints of
S (see Fig. 7).

// Loop over particle bins
foreach particle bin P, do
tmin < lowest cell index in the cluster associated with P; ;
tmax < highest cell index in the cluster associated with
Py
o < lowest particle index of P; ;
w < highest particle index of P; ;
// Forward swapping pass
foreach p; € P, in ascending order do

if I(p;)) < tmin then

‘ swap (Pi, Pa)
a0 <«—a+1;

end
end
// Backward swapping pass
foreach p; € P, in descending order do

if I(p;) > tmax then

‘ swap (Di, Po) ;
w<—w-—1;
end

end

// At this point & and @ are the new temporary
bookmarks indicating the boundaries of the
subset S; of non-migrating particles

end

Algorithm 3: Particle de-fragmentation

Particle re-bracketing. After a De-fragmentation step particles
in the L and R subsets of each P need to be swapped with
those in the adjacent bin. More precisely, if P, = {L;; S;; R;} and
Piy1 = {Li4+1Si+1; Riy1} are two adjacent bins then the Particle Re-
bracketing step will swap the subset L, with R, resulting in new
bins P, = {L;; Sj; Liy1} and Py = {Ry; Si1; Ri1}. The bookmarks of
Py and P4 will be readjusted to mark the new boundary between
them (see Fig. 8).

This step is based on the same swapping strategy used in one of
the two passes of the De-fragmentation step; in the Re-bracketing
case there is a single pass that for each [ traverses only the elements
of Ry and L;;; and swaps them with the pivot value equal to
the associated cell cluster boundary. The complexity of this step
depends on the number of particles that leave their bins, which is
typically only a small fraction of N. It is important to note that in
the case where the maximum cell traversal number n, > 1, the
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Fig. 8. During Re-bracketing particles from adjacent bins are swapped according to their designation from the De-fragmentation step. Bookmarks are adjusted to mark the
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Fig.9. Asingle particle bin is processed by a block of n; threads. Since n; is much smaller than the number of particles in the bin several batches of size n; each are processed
in succession. The intermediate results are accumulated in a shared memory cell data structure of size n, which in the end gets written to global memory in a coalesced

fashion.

Particle De-fragmentation and Re-bracketing steps do not change;
they just need to be run n. times in a row. For small values of n. the
resulting complexity is still small compared to that of full particle
sorting.

5.5. Summary

Combining the algorithm ingredients discussed so far we
summarize the main components of a fast Particle-To-Grid
Interpolation Algorithm

1. Particle Binning consisting of particle fragmentations followed
by particle re-bracketing;

2. Particle-To-Cell Density Deposition carried out by the Cell Based
Particle Pull algorithm;

3. Cell-To-Vertex Density Accumulation which produces the final
array of particle density values at each grid vertex.

6. CUDA implementation of Particle-To-Grid interpolation

We now discuss the implementation of the Particle-To-Grid
interpolation operation on an NVIDIA CUDA graphics processor.
We focus on the case of a three dimensional domain with
periodic boundary conditions. One of the main benefits of the
fast Particle-To-Grid Interpolation Algorithm is that the data
structures and the data management strategies fit well into the
CUDA programming/execution model. In particular, random global
memory access has been eliminated and data has been organized in
units that can be processed independently by concurrent threads.
The key performance enhancing strategy here is to allow threads
to cooperate in processing batches of particles staged in shared
memory.

6.1. Data structures

There are four real valued quantities associated with a particle:
three spatial coordinates and a weight. The spatial coordinates
determine uniquely the index of the grid cell in which the particle

is contained. Although technically redundant this integer index
is stored separately and used as a sorting key during the Particle
Binning step. Following one of the fundamental stream processing
mantras we organize the particle data container as a structure of
streams (vs. a stream of structures). Thus there are five separate
arrays of length N, one for each of the five particle attributes.
Similarly for the grid cell data container: the contribution of
particles to each of the eight vertices in a cell is maintained
in a separate array. One of these arrays is ultimately used for
output during the stream reduction operation in the Cell-To-Vertex
Density Accumulation Step (see below).

6.2. Thread organization

One CUDA thread block is assigned per particle bin. In practical
applications the bin size is larger than the maximum allowable
threads per block (512 at the time of this writing) and so each
thread makes several strides over its assigned bin. Unless the bin
size happens to be a multiple of the block size, some threads will
be idle during the last stride.

While processing its assigned particle bin, a thread block stores
the intermediate values of the particle contributions to shared
memory (Fig. 9). Since particles within a bin are not sorted, write
access to shared memory is random resulting in possible memory
collisions. Resolving these collisions is made possible by a “thread
tagging” trick that emulates atomic shared memory operations
(see discussion in 6.3.1). The output from a kernel executed by a
thread block is written in the associated cell cluster in the global
cell data container. Threads are synchronized at the onset of the
output stage and writing is coalesced ensuring optimal perfor-
mance.

6.3. Efficient use of parallel cache

During the Particle Binning and the Particle-To-Cell Density
Deposition steps shared memory is used as parallel cache in which
threads stage data for processing. Each step has a different parallel
cache management strategy that reflects the nature of the specific
algorithms involved.
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Fig. 10. An illustration of Particle De-fragmentation in CUDA. A thread block reads the current exchange queue (dark grey (pink in web version) background) into shared
memory, and the current particle batch (white (purple in web version) background) into local registers. The particle batch and the exchange queue are initialized identically:
with the first n; bin elements for the forward swapping pass; with the last n; bin elements for the backward swapping pass. After all necessary swaps are completed, the two
batches are written (coalesced) back into global memory. The head of the exchange queue is shifted according to the number of swaps in the previous pass; the next particle

batch is offset by the number of CUDA threads per block.
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Fig. 11. Illustration of the spatial decomposition and the associated memory layout
for hierarchical bins. Numbered boxes indicate cell clusters each containing a bin of
particles. Particles within a bin can be in arbitrary order.

6.3.1. Particle binning

During this step a pair of particle batches are read (in a
coalesced fashion) from the global particle array, one into shared
memory and one into local (per thread) registers. The batch size
is equal to the number n; of CUDA threads per block. The batch
in shared memory serves as an “exchange queue”: each thread
compares the cell index of the particle in its local register with
the current pivot value and swaps accordingly with the particle
in the next available slot in the exchange queue. After all swaps
are completed the threads perform a coalesced write of the two
batches back into global memory. Fig. 10 illustrates the CUDA
version of the Particle De-fragmentation algorithm pictorially.

Since comparisons are carried out concurrently, the one
outstanding problem is how to update the exchange queue’s tail
attribute in a synchronized fashion.

The exchange queue is implemented as an array of size n, and
its tail attribute is simply an integer index into the next available
element in the array. Conflict arises if several concurrent threads
attempt to update the index simultaneously. To deal with this
issue we borrow the “thread tagging” trick used in the NVIDIA’s
histogram calculation example [15]. Essentially, the tail attribute
is declared as a shared memory integer variable with the C++
volatile type qualifier and tagged by inserting the index of the last
thread that updated it into its 5 most significant bits. A thread that
needs to update the tail attribute attempts a sequence of read-
write operations into the tail variable until it verifies that the last
updated value was indeed its own one (see [ 15] for details). During
each attempt the tail value is incremented by one; upon success,
the thread has obtained a valid slot index which it uses to swap its
particle with the corresponding element in the exchange queue.
Since the thread tagging trick works only on a per-warp basis,
separate queue indices are maintained for each warp. During a
preliminary pass each thread determines whether it needs to swap
its particle with one in the exchange queue; in the case when
it does, it obtains a valid per-warp slot index. Threads are then
synchronized and subsequently all those that need to swap do so in
parallel by converting the per-warp index into a unique exchange
queue index. The key point here is that after synchronization the

number of swapped particles per warp is already known and is
used as an offset for the set of indices in the higher numbered
warps.

We point out that operations that rely on similar types of
parallel shared counters, or shared memory atomic operations
in general, can be essential to the efficient implementation of
important parallel algorithms in CUDA. We believe that it would
be very beneficial if GPU manufacturers consider implementing
shared memory atomic operations in hardware. Atomic operations
in global memory are already available for CUDA devices of
capability 1.1 and higher.

6.3.2. Particle-To-Cell density deposition

During this step particles are read (in a coalesced fashion) in
batches into local (per thread) registers from the corresponding bin
in the global particle array. A single CUDA thread block is assigned
to a cell cluster; each cell in the cluster is assigned to an element
in a shared memory Density Deposition array. Elements of this
array consist of two quadruples of real numbers corresponding to
the value of the density function at each cell’s eight vertices. After
a thread has read its current particle it determines the particle’s
cell index and deposits its contribution to the cell vertices. As the
process of deposition is carried out by concurrent threads it is
prone to memory collisions and may require simultaneous updates
to elements in the Density Deposition array.

To deal with this issue in the absence of atomic shared memory
operations one may attempt to apply the thread tagging trick from
Section 6.3.1. However, the difference here is that the updated
quantities are floating point numbers. One option to get around
this is to assume that no two particles within a warp-sized batch
will have exactly the same contribution to the cell vertices. If
this is the case then the contribution values themselves can
be used as unique particle identifiers and the same process of
incremental updating can be applied. Another option is to use
the 5 least significant bits in the floating point representation of
the contribution value for thread tagging (as opposed to the 5
most significant bits for the integer case). This in effect reduces
the floating point precision to 27-bits, which, depending on the
application, may be computationally sufficient.

Neither of these approaches is ideal, although the assumption in
the former is rather non-restrictive: in most cases the probability
for a repeated pair in a sequence of 32 floating point numbers
drawn from a close to uniform distribution is virtually zero. This
is the approach we take in our test implementation. Clearly,
the availability of hardware supported shared memory atomic
operations would be a highly desirable feature in future CUDA
devices.
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Fig. 12. Bins are laid out in memory so that de-fragmentation can be performed hierarchically. Traversing the BSP tree takes O(N log C), where C is the total number of bins.

The leaves of the tree contain unsorted particle sequences.

Particles | Full Sorting | Binning | Ratio
™ 117.6 5.8 20.3
2M 173.7 9.7 17.9
4M 351.8 18.3 19.2
&M 709.8 37.8 18.8
16M 1407.7 73.5 19.4

Fig. 13. Performance comparison of our particle binning algorithm against full
sorting. Particle numbers are given in powers of 2, i.e. 1M = 1048 576. Full sorting
is carried out using the CUDA Data Parallel Primitives library (CUDPP) radix sort
function. Execution times are measured in milliseconds.

6.4. Hierarchical particle binning

The restrictions imposed by the limited amount of shared
memory per multiprocessor (presently 16 KB) have an impact on
the CUDA implementation of the Particle Binning step. Increasing
the number of threads per block benefits performance but at the
same time diminishes the amount of available shared memory
per thread block. Optimal performance for the Particle-To-Cell
Density Deposition step is achieved at a cell cluster size of 64; in
the 3-dimensional case this means that the product of two of the
grid’s dimensions has to be 64, too small for practical purposes.
To address this issue we implement a hierarchical version of the
Particle Binning algorithm and adjust the underlying particle and
cell data structures accordingly.

The main idea is to treat the particle bins as leaves of a pointer-
less binary space partition (BSP) tree. Associated with it is a spatial
domain decomposition whereby cell clusters are arranged along
a space filling curve [17], such as a Z-curve (Fig. 11). Hierarchical
binning is carried out by performing particle de-fragmentation and
exchange among the two branches of the tree at each node starting
from the root. This process is similar in spirit to the recursive
partitioning performed in the classical Quicksort algorithm, [3];
the main differences are that here tree traversal is partial and
breadth first; also pivot values are fixed in advance and need not
be part of the sorted sequences. An illustration of the hierarchical
binning algorithm is given in Fig. 12

This algorithm has two main benefits:

e it doesn’t assume anything about the particle dynamics and
specifically about how far particles drift in each time step;
e it parallelizes well (just like Quicksort).

An issue, however, is that the number of allowable thread
blocks is low at levels close to the root of the BSP particle bin
tree: at level k there can be at most 2! thread blocks launched
simultaneously. With parallel execution at level k, the number of

elementary operations per thread block is N/2¥"! and thus the
expected parallel execution time is proportional to

1 1 1 1
N 5+§+.H+21<+1 =N 1_2k+2 (4)

which ~ N for large enough k. If hierarchical binning is performed
over a 3-dimensional domain, this bound can be improved by first
running de-fragmentation in parallel with respect to some slab
partitioning (as outlined in Section 5.4). Then within each slab run
a 2-dimensional hierarchical binning in parallel for all slabs. This
gives parallel execution time proportional to:

NN T L N -
s s \2 22 2k+1 | T

where s is the number of slabs.

For instance, on a domain of size n, x n, x n, we identify
slabs with two dimensional slices along a coordinate axis, say z,
and thus s = n,. We set cell clusters to have size 64 (due to
the shared memory limitations outlined above) and consequently
there are n, x n,/64 = 2* cell clusters per slab. There are k + 1
de-fragmentation passes: the first one with n, thread blocks to
repartition between adjacent slabs; the next k with n,2! thread
blocks each, 1 < i < k, to perform hierarchical binning at level
i, within each slab.

We emphasize that the estimates given in Egs. (5) and (4) are
theoretical best case scenarios. In practice, if k is too large, the
terms of the geometric sequence in Eq. (5) are expected to saturate
for some k. < k + 1. This is due to the fact that at some level of
the BSP particle bin tree there will not be enough available thread
blocks for concurrent execution and the kernel would run longer
than the ideal O(N /2% +1) time.

7. Performance results

We discuss the performance of our algorithms on various test
case scenarios. We consider the Preprocessing Step and the Particle
Density Deposition Step separately so that the effect of sorting can
be isolated. We leave out the Cell-To-Vertex step whose execution
time depends only on the grid size and is relatively small; for
example, it is 19 and 6 milliseconds for grids of size 64° and 323
respectively. The tests have been performed on a 2.67 GHz 64-bit
quad core Intel processor using Intel’s Fortran 10.1 compiler for the
CPU version, and NVIDIA’s CUDA 1.1 nvcc for the GPU version of
the code. The standard 02 compiler optimization option was used
to compile both versions.

Preprocessing step. We compare the execution times of particle
binning versus full sorting, both performed on the GPU. The results
are shown on Fig. 13 for a grid size of 64 and cell cluster size of 64.

doi:10.1016/j,jpdc.2008.05.009

Please cite this article in press as: G. Stantchev, et al., Fast parallel particle-to-grid interpolation for plasma PIC simulations on the GPU, ]. Parallel Distrib. Comput. (2008),




10 G. Stantchev et al. / ]. Parallel Distrib. Comput. I (REIN) IRI-HER

Number of Particles Timings

Total Per Cell CPU | GPU [ Ratio

256K 8 129 | 0.7 | 184

512K 16 22.1 1.3 17.1
M 32 414 | 26 | 159
2M 64 77.3 | 5.3 | 146
4M 128 149.9 | 10.9 | 13.6
8M 256 296.3 | 24.1 | 123
16M 512 589.4 | 50.9 | 11.6

Fig. 14. Performance comparison of the Particle-To-Cell step for grid size 32 x
32 x 32 and varying number of particles. Particle numbers are given in powers of
2,i.e. 1K = 1024; 1M = 1048 576. The number of particles per cell is the average.
Execution times are measured in milliseconds.

Number of Particles Timings

Total Per Cell CPU | GPU | Ratio
1M 4 67.8 | 3.2 | 21.2
2M 8 104.2 | 5.5 18.9
AM 16 1789 | 10.3 | 174
8M 32 324.3 | 20.3 | 15.9
16M 64 617.2 | 42.3 | 14.6

Fig. 15. Performance comparison of the Particle-To-Cell step for grid sizes 64 x
64 x 64.

Particle-To-Cell step The Particle-To-Cell step has been imple-
mented on the CPU using the Particle Push method but assuming a
sorted input particle array. This improves significantly CPU cache
coherency and results in 3-5 times speedup over the unoptimized
CPU version. The CPU times shown on Figs. 14 and 15 correspond
to the “sorted” version, ensuring that both the GPU and the CPU
implementations are compared as fairly as possible. Two observa-
tions are immediately apparent:

e thatexecution times scale with the number of particles: linearly
for CPU and almost linearly for GPU

e that the CPU/GPU time ratio depends only on the average
number of particles per cell.

Furthermore, these results provide an encouraging initial
benchmark that unequivocally justifies the feasibility of develop-
ing high performance PIC codes on the GPU.

8. Conclusion

We have given an overview of Particle-To-Grid interpolation in
the context of plasma PIC simulations. We have discussed the po-
tential issues involved in implementing Particle-To-Grid interpo-
lation on the GPU and we have presented a fast parallel algorithm
that maps efficiently on CUDA platforms. We have demonstrated
considerable speedup over an equivalently optimized CPU imple-
mentation.

As future work we envision incorporating the CUDA accelerated
Particle-To-Grid component into a fully functional GPU based
PIC code. Further, we plan to carry out careful investigation
and benchmarking of the impact of cell cluster geometry and
size on the performance of the Hierarchical Particle Binning
step. Comparison with other computational methods whose GPU
implementations exhibit similar memory access patterns issues,

such as the NFFT [18], and the FMM [6], is also in order. An issue
of paramount importance is how PIC codes would scale in a hybrid
distributed GPU environment, e.g. a cluster of GPU enabled multi-
core compute nodes where network communication will become
the dominant bottleneck. Such a migration would be ultimately
necessary if realistically sized PIC simulations should find their way
into the mainstream of GPU computing.
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